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Abstract

This paper derives ex-ante standard errors of risk premium predictions from neural networks

(NNs). Considering standard errors, I provide improved investment strategies and ex-post out-

of-sample (OOS) statistical inferences relative to existing literature. The equal-weighted (value-

weighted) confident high-low strategy that takes long-short positions exclusively on stocks that

have precise risk premia earns an OOS average monthly return of 3.61% (2.21%). In contrast, the

conventional high-low portfolio yields 2.52% (1.48%). Existing OOS inferences do not account

for ex-ante estimation uncertainty and thus are not adequate to statistically compare the OOS

returns, Sharpe ratios and mean squared errors of competing trading strategies and return

prediction models (e.g., linear, NN and random forest). I develop a bootstrap procedure that

delivers robust OOS inferences. The bootstrap tests reveal that large OOS return and Sharpe

ratio differences between NN and benchmark linear models’ traditional high-low portfolios are

statistically insignificant. However, the NN-based confident high-low portfolios significantly

outperform all competing strategies. Economically, standard errors reflect time-varying market

uncertainty and spike after financial shocks. In the cross-section, the level and precision of risk

premia are correlated, thus NN-based investments deliver more gains in the long positions.
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I. Introduction

Modern empirical asset pricing literature applies machine learning (ML) models to estimate

asset risk premia (i.e., expected returns in excess of the risk free rate), as these models can accom-

modate non-linear relations amongst a high-dimensional set of predictors. In an influential work,

Gu, Kelly, and Xiu (2020) (GKX) examine various ML models, such as neural networks (NNs) and

random forests, to predict individual stock’s monthly risk premia. They argue that NNs statisti-

cally outperform the benchmark linear models examined by Lewellen (2015) (henceforth Lewellen)

in predicting stock risk premia.1

However, the burgeoning ML literature has not ascertained the ex-ante precision (i.e., standard

errors and confidence intervals) of risk premium predictions from NNs. Fama and French (1997) and

Pástor and Stambaugh (1999) show that expected return estimates from traditional factor-based

models are unavoidably imprecise due to uncertainty about unknown parameters, including asset

exposures to factors (betas) and factor premia (gammas). Consequently, they argue that factor-

based risk premium measurements are not suitable for making cost-of-equity capital decisions.

Given that NNs entail a massive number of parameters, determining the precision of NN-based risk

premia is important.

This paper develops a novel and easy-to-implement procedure to estimate predictive standard

errors of NN-based risk premium predictions at both the stock-level and portfolio-level (e.g., in-

dustry portfolios). These ex-ante measures capture estimation uncertainty related to risk premium

predictions. Whereas standard errors of traditional, linear, factor-based and characteristics-based

risk premium estimates are available in the literature, those of highly complex, NN-based risk

premia are not. I tackle this challenge by adapting the NNs of GKX to simultaneously deliver

risk premium predictions and their standard errors every period. The predictive standard errors

resemble classical bootstrap-based estimators but are available in real-time with no additional

computation costs. The obtained standard errors are then theoretically justified, and empirically

validated using Monte-Carlo simulations.

Importantly, I present novel insights demonstrating why and how ex-ante standard errors must

be explicitly considered to address two core asset pricing problems that appear in virtually every

study in the burgeoning ML literature: (i) forming long-short trading portfolios using NN-based or

any ML-based risk premium predictions and (ii) statistically evaluating the ex-post out-of-sample

(OOS) performance of any model-based risk premia and corresponding trading strategies.2 Con-

sidering ex-ante standard errors in answering both of these questions is of fundamental importance

and has not been established in the literature.

1Bianchi, Büchner, and Tamoni (2020) and Bali, Goyal, Huang, Jiang, and Wen (2020) employ NNs to estimate
bond and corporate bond risk premia, respectively.

2The standard errors also impact the cost of capital decision-making with NN-based risk premia. In the spirit of
Fama and French (1997) and Pástor and Stambaugh (1999), Allena (2020b) separately addresses this question.
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Ex-ante standard errors provide investment gains. Many researchers (e.g. GKX and Avramov,

Cheng, and Metzker (2020)) sort stocks into deciles based solely on their return predictions, and

they take long-short positions on the extreme predicted-return deciles. This paper provides sub-

stantial enhancements to these conventional high-low (HL) investment strategies by exploiting the

cross-sectional variation in the ex-ante precision of risk premia. I introduce novel “Confident-HL”

trading portfolios that exclusively take long-short positions on a subset of stocks in the extreme

predicted-return deciles that have more confident risk premia (i.e., high absolute ratios of risk pre-

mium predictions and their standard errors, or absolute t-ratios).3 These strategies deliberately

exclude stocks with relatively imprecise risk premium estimates and thus deliver large OOS average

return and Sharpe ratio improvements.

Ex-ante standard errors impact ex-post OOS statistical inferences. To compare the ex-post

OOS performance of these HL trading strategies or, any competing return prediction models or

associated investment portfolios, researchers use two approaches: (i) reporting point estimates of

models’ OOS R2s (OOS-R2s) and investment portfolios’ OOS average returns and Sharpe ratios

(e.g., Chen, Pelger, and Zhu (2020)) or (ii) conducting simple t-tests motivated by Diebold and

Mariano (2002) (henceforth DM) (e.g., GKX, Bianchi et al. (2020), Avramov et al. (2020), and

Bali et al. (2020)).4 I show that these ex-post OOS inferences are inadequate because they do not

account for ex-ante standard errors (i.e., estimation uncertainty).5

This paper presents a bootstrap procedure, robust to ex-ante estimation uncertainty, for valid

statistical comparisons of any two portfolios’ ex-post OOS returns and Sharpe ratios. Likewise, the

method also compares the predictive performance of any two competing return prediction models

(e.g., linear, random forests and NNs). Simulations suggest that whereas the 5%-level bootstrap

tests yield accurate sizes close to 5%, the DM tests deliver distorted sizes between 13% and 42%,

depending on the degree of estimation uncertainty.

Importantly, the bootstrap tests reveal that existing inferences with the DM tests over-reject

the benchmark Lewellen model in favor of NNs. I find that the difference between both models’

conventional HL portfolios’ OOS returns and Sharpe ratios are either moderately significant or

statistically insignificant. However, NNs exceptionally outperform on subsamples of stocks that

have confident NN-based risk premia. Likewise, NN-based Confident-HL portfolios, which exclude

stocks with relatively imprecise risk premia, statistically outperform all other competing strategies.

Thus, considering ex-ante standard errors of NN-based risk premia is necessary for both real-time

trading strategies and ex-post OOS inferences. Although this paper focuses primarily on NNs

3I measure the precision of risk premium predictions using their confidence-levels (i.e., absolute t-stats). See
section C.C3 for an analytical motivation. Alternatively, I also present results using the inverse standard errors as
proxies for the precision, and my conclusions are the same.

4Using simulations, Allena (2020a) shows that inferences based only on OOS point estimates are highly misleading.
5Diebold (2015) and GKX emphasize that the DM tests are not suitable for comparing model-based forecasts

with estimation uncertainty. GKX acknowledge this limitation and conduct the DM tests. I illustrate why and how
to account for parameter uncertainty to obtain accurately sized tests.
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because of their predominance, I emphasize that the arguments hold for all ML-based risk premia.

I begin by showing that ex-ante standard errors of NN-based, or any ML-based, risk premium

predictions predict their (future) squared forecast errors and thus yield large economic gains.6 For

example, when the standard errors of specific stock risk premium predictions are large, so are their

squared forecast errors. This result is due to the “bias-variance” tradeoff. Expected squared forecast

errors equal the sum of ex-ante “variances” and squared “biases”. Whereas bias represents model

misspecification, variance quantifies estimation uncertainty. Because predictions from ML models

entail flexible functions involving many parameters, variances rather than biases predominantly

determine their squared forecast errors. As a consequence, I establish that the Confident-HL

portfolios that deliberately drop stocks with imprecise risk premia earn superior expected returns.

A simple example provides the central intuition. Consider two stocks A and B with risk premia

µA and µB, respectively. Let µ̂A and µ̂B be their risk premium predictions, which are normal,

uncorrelated and unbiased, with the measurement error variance σ2. The unbiased assumption

suits ML-based predictions. Then the expected return of the HL strategy that takes a long (short)

position on the stock with the highest (lowest) risk premium prediction equals

E(HL) = (µA−µB)P (µ̂A > µ̂B)+(µB−µA)P (µ̂B > µ̂A) = (µA−µB)

[
2Φ

(
µA − µB√

2σ

)
− 1

]
, (1)

where P (.), Φ(.) denote the probability and standard normal distribution measures, respectively.

(1) indicates that the expected HL return monotonically decreases with the variance of risk premium

predictions. In other words, between any two sets of stocks with the same levels of risk premia,

the HL strategy formed from more precise predictions yields higher expected returns. Intuitively,

besides the level of risk premium predictions, the precision helps better determine the cross-sectional

ranking among stocks and thus generates higher HL expected returns.7

Consistent with this intuition, the empirical section documents enormous economic gains from

the Confident-HL portfolios. In particular, I consider a 3-layer NN (NN-3) examined by GKX

to predict a large sample of U.S stock returns between 1987 and 2016. The conventional equal-

weighted (EW) and value-weighted (VW) HL portfolios formed using NN-3-based risk premia earn

ex-post OOS average monthly returns of 2.52% and 1.48%, with annualized Sharpe ratios of 1.5

and 0.9, respectively. However, the EW (VW) Confident-HL portfolio formed from a small subset

of stocks confidently predicted by NN-3 delivers corresponding measures of 3.61% (2.21%) and

1.75 (1.09), respectively. Thus, dropping imprecise predictions enhances the OOS average returns

by 43% (49%) and Sharpe ratio by 16% (21%). In contrast, measures of the EW (VW) “Low-

Confident” portfolio that instead takes long-short positions on the subset of stocks with the most

6Forecast errors equal the differences between true and predicted risk premia.
7Mathematically, the prediction uncertainty induces downward bias to the maximum possible expected HL return

that can be obtained when true risk premia are known. This result follows from Jensen’s inequality (see section II).
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imprecise risk premia are relatively much lower, 2.35% (1.31%) and 1.18 (0.55), respectively.

The Confident-HL portfolio’s impressive performance hinges on the theoretical result showing

that NN-based predictions’ ex-ante standard errors predict their ex-post squared forecast errors.

Consistent with this result, I find that the ex-ante confidence and ex-post OOS-R2 of NN-based

predictions are monotonically related. The bottom decile containing the stocks with the most

imprecise ex-ante return predictions attain an OOS-R2 of 0.81%. In contrast, the top decile of

stocks confidently predicted by NN-3 delivers a dramatic 2.21% OOS-R2, an increase of 170%.

Notably, Confident-HL portfolios based on simple models involving a few parameters (e.g.,

Lewellen) are less likely to deliver impressive gains. Biases rather than variances predominantly

determine expected forecast errors of simple models. Consistent with this result, I find that the

Confident-HL portfolios formed using the Lewellen model’s risk premium predictions and standard

errors do not yield economic gains. Unfortunately, it is not possible to construct “Low-Bias-HL”

portfolios (analogous to “Confident-HL” portfolios) for simple models using ex-ante biases (rather

than standard errors) because true risk premia are unknown.

To assess whether the documented NN-3-based Confident HL portfolios’ OOS gains statistically

outperform other strategies, I first show that the existing DM tests are inadequate because they do

account for ex-ante standard errors. Although ex-ante estimation uncertainty impacting ex-post

OOS inferences seems instinctively puzzling, a simple example demonstrates the main intuition.

Consider comparing OOS returns of any two model-based HL portfolios. These portfolios could

be expressed as different weighted sums of excess returns, depending on which stocks comprise the

portfolios’ long and short legs. Every period, the weights are estimated using all past data. The DM

t-test thus equals the ratio of the HL return differentials’ time-series average to its standard error

estimate. DM show that this test yields valid asymptotic inferences only under the assumption

that the return differential series is covariance stationary. However, the precision of the portfolios’

estimated weights increases over time as more data are available. Thus, the HL return differentials

exhibit time-varying second moments, breaking down the DM assumption.

Consistent with this intuition, I empirically establish that all model-based HL returns violate

the DM assumption. The covariance-stationarity tests of Pagan and Schwert (1990) lends support

to non-stationarities in the HL returns, suggesting that the DM tests are inadequate. To conduct

valid OOS inferences, I develop a bootstrap procedure that is robust to non-stationarities induced

by estimation uncertainty. The method builds on the block bootstrap procedure of Kunsch (1989),

which provides asymptotically valid inferences in the presence of non-stationarities (Gonçalves and

White (2002, 2005)).

The bootstrap tests suggest that the differences between NN-3 and Lewellen-based conventional

HL strategies’ OOS returns and Sharpe ratios are either statistically insignificant or moderately

significant. For example, a seemingly large 0.72% (0.37%) difference between the EW (VW) NN-3-
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based and Lewellen-based HL portfolios’ average monthly OOS returns are statistically insignificant

at the 1% (10%) level.8

However, the NN-3-based Confident-HL strategy statistically outperforms all other compet-

ing strategies, including NN-3-based conventional HL portfolios, as well as Lewellen-based HL and

Confident-HL portfolios. Moreover, the relative performance of NN-3 over Lewellen increases mono-

tonically with the precision of NN-3-based risk premia. For example, the average monthly return

difference between NN-3 and Lewellen VW HL portfolios formed using the stocks most confidently

predicted by NN-3 is a highly significant 0.82%. In contrast, the difference is a significantly nega-

tive -1.2% on the subset of stocks most imprecisely predicted by NN-3. These results demonstrate

that besides risk premium predictions, ex-ante standard errors are crucial for constructing desirable

NN-based investment portfolios.

Avramov et al. (2020) argue that investments based on NN-3 predictions primarily extract

gains from microcaps (i.e., stocks with market capital smaller than the 20th NYSE size percentile)

and deliver insignificant OOS returns on non-microcaps. However, I find that the Confident-HL

portfolios yield significant economic gains even on non-microcaps. For example, the EW (VW)

Confident-HL portfolio yields an average OOS monthly return of 2.25% (2.07%), whereas the HL

strategy delivers 1.66% (1.42%). The Confident-HL portfolios’ performance is robust to transaction

costs, traditional factor model risk exposures and higher-moment risks that penalize losses more

than rewarding gains.

To ensure that the Confident-HL strategies’ superior performance is not driven by inadvertently

taking long (short) positions on the stocks that have higher (lower) risk premium predictions, I

construct several matching strategies. These portfolios resemble the conventional HL strategies but

are matched to have the same “predicted-return” averages as those of the Confident-HL portfolios.

Whereas the EW-Confident HL portfolio yields a 3.61% monthly OOS return, the matching HL

strategy makes 3.07%. This result, consistent with the previously described example, reiterates

that for the same levels of risk premia, trading strategies formed from stocks with more confident

risk premia earn higher expected returns. The significant 0.55% monthly return difference between

the two portfolios precisely captures the economic value of incorporating standard error information

into trading strategies.

In the final exploration, I document interesting time-series and cross-sectional variations in

the ex-ante standard errors that have important economic relevance. In the time-series, aggregate

monthly standard errors (i.e., cross-sectional averages of ex-ante standard errors) reflect time-

varying financial market uncertainty. Bloom (2009) and Baker, Bloom, and Davis (2016) docu-

8My results do not directly compare with GKX for one main reason, among others. Lewellen (2015) advocates
three benchmark linear models with either three, seven, or fifteen characteristics. Whereas GKX use the model with
three predictors, I examine the model with fifteen that Lewellen showed to exhibit superior return forecasting ability.
Nevertheless, the conclusion that the DM tests over-reject any of Lewellen’s models in favor of NNs remains valid.
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ment that market uncertainty jumps up after major shocks (e.g., Black Monday, Lehman Brothers

bankruptcy). Consistent with these studies, the aggregate standard errors spike an average of at

least twice the value of other periods. Because many individual predictors (e.g., size, price trends,

and stock market volatility) in the NN-3 model substantially deviate from their usual distributions

when markets are uncertain, risk premium predictions based on these unusual predictors would be

hugely imprecise. Thus, the aggregate standard errors capture market uncertainty.

In the cross-section, the NN-3 model (ex-ante) confidently predicts risk premia of stocks as-

sociated with small market capital, high book-to-market ratios, high 1-year momentum returns,

and high risk premium predictions. Thus, the NN-3-based investment strategies deliver more gains

in the long-leg rather than the short-leg. This result contrasts with the “arbitrage asymmetry”

studies, which argue that anomaly-based investment portfolios yield relatively more profits in the

short-leg (e.g., Stambaugh, Yu, and Yuan (2012) and Avramov, Chordia, Jostova, and Philipov

(2013)). Thus, possible mechanisms that lead to the association between the level and precision of

(NN-based) risk premium predictions still need to be explored.

To summarize, this paper quantifies the ex-ante precision of the NN-based risk premium pre-

dictions and exploits this information to construct desirable Confident-HL investment portfolios.

To statistically assess these portfolios’ OOS performance, the paper shows that the existing DM

tests are inadequate because they do not take into account ex-ante estimation uncertainty. I pro-

pose a bootstrap test that permits valid OOS inferences. The tests suggest that the NN-3-based

Confident-HL portfolios significantly outperform the traditional NN3-HL and Lewellen-HL port-

folios in terms of their OOS returns and Sharpe ratios, whereas the reported dominance of the

conventional NN3-HL over the Lewellen-HL portfolio is statistically insignificant.

A. Contribution

The paper makes three crucial methodological and investment-related contributions.

Ex-ante standard errors. This paper generalizes the “dropout” procedure developed by Gal

and Ghahramani (2016) to obtain standard errors of NN-based risk premium predictions. They

show that an NN that employs dropout regularization is a Bayesian NN with a similar structure,

and they estimate standard errors of NN-based predictions using the comparable Bayesian models’

instantly available posterior variances. However, these are standard errors of individual “raw”

predictions (equivalent to excess return predictions), not of “prediction means” (comparable to risk

premium predictions). Moreover, they do not discuss how to obtain “joint densities” of different

predictions from Bayesian NNs, which are necessary to compute portfolio-level standard errors.

Nor do they show whether these Bayesian standard errors satisfy frequentist properties.

To my knowledge, this is the first paper to compute stock-level and portfolio-level standard

errors of NN-based risk premium estimates by explicitly deriving the marginal and joint densities of
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expected return predictions from Bayesian NNs. I draw an equivalence between the frequentist and

Bayesian standard errors and use simulations to show that the computed standard errors satisfy

frequentist properties with accurate coverage probabilities. For example, simulations indicate that

95% (or any x% with 0 < x < 100) confidence intervals constructed from risk premium predictions

and their standard errors cover the true simulated risk premia with nearly 95% (x%) probability.

Out-of-Sample Comparisons. The paper relates to studies that compare competing return

forecast models, including Goyal and Welch (2003, 2008), GKX, Bianchi et al. (2020), Bali et al.

(2020), and Chen et al. (2020). These studies use either the OOS DM tests or assess the point

estimates of OOS Sharpe ratios and OOS-R2s, without accounting for estimation uncertainty. In

contrast, this paper’s block bootstrap method generalizes the DM tests by automatically accounting

for non-stationarities induced by estimation uncertainty. This method can be employed to assess

OOS performance of any model-based return predictions.

Investment Portfolios. The paper relates to studies, including GKX, Chinco, Clark-Joseph,

and Ye (2019), and Avramov et al. (2020), that construct traditional HL portfolios based on var-

ious model-based return predictions. Alternatively, this paper shows how Confident-HL strategies

could deliver superior expected returns. These strategies generally apply to all model-based return

predictions, as long as their predictive standard errors are informative about their squared forecast

errors.

B. Paper Overview

I organize the rest of the paper as follows. Section II provides the basics of model-based risk

premium predictions and shows why the Confident-HL portfolios yield superior expected returns.

Section III presents the statistical framework of NN-based risk premia and derives their standard

errors. Section IV shows how to conduct valid OOS inferences. Section V presents the empirical

results. Section VI concludes. Appendix includes proofs of propositions and simulations. Internet

Appendix contains additional robustness checks and simulations.

II. Risk Premium Predictions and Predictive Standard Errors

This section presents the fundamental premise of measuring risk premia based on general

econometric models, including the traditional linear and more advanced ML models (e.g., NN).

It builds on the bias-variance tradeoff to explain why ML models’ predictive standard errors are

informative about their squared forecast errors, thus yielding large economic gains in terms of

appropriate investment portfolios.
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A. Basics of model-based risk premium predictions

In the spirit of GKX, consider a general additive prediction error model for realized stock

returns in excess of the risk-free rate, given by

ri,t+1 = Et(ri.t+1) + εi,t+1, Et(εi,t+1) = 0, Vt(εi,t+1) = σ2 (2)

where ri,t+1 is the excess return of stock i at period t + 1; Et(ri,t+1) is the stock i’s unobserved

conditional risk premium at period t; and εi,t+1 is the unexpected component of returns due to new

information at t+1, which is unpredictable at t. Et(.) and Vt(.) denote the conditional expectation

and variance operations, respectively. εi,t+1 are iid over time and across stocks.

Let a flexible model f(zit;β), involving stock-level predictors {zit}(it) and parameters β, esti-

mates unobserved risk premia. The set of predictors could be potentially large, containing many

characteristics (e.g., size and book-to-market) and macroeconomic variables (e.g., earnings-to-price,

stock market volatility). Like GKX, the parametric form of the model, f(.), remains the same across

different stocks and over time, thereby exploiting information from the entire panel of data to yield

stable risk premium measurements. Because the true parameters, β, are unknown, the risk premia

are estimated by

Et(ri,t+1) ≈ f(zit; β̂), ∀ stocks i, (3)

where β̂ are estimated parameters from the past data. The expected squared forecast errors of the

model-based risk premium predictions are given by

Et

[(
Et(ri,t+1)− f(zi,t; β̂)

)2
]

= Et

[(
ri,t+1 − f(zi,t; β̂)

)2
]
− Vt(εi,t+1), ∀i. (4)

Because εi,t+1 and {zit}(i,t) are independent, minimizing the risk-premium squared forecast errors

is equivalent to minimizing the realized return squared forecast errors. Thus, the best risk premium

measurements are those that accurately predict subsequent returns. Consequently, the literature

uses the following specification to estimate the true risk premia:

ri,t+1 = f(zit;β) + ηi,t+1, Et(ηi,t+1) = 0, (5)

where risk premium and next period return (r̂i,t+1) predictions are given by

Et(ri,t+1) ≈ r̂i,t+1 = f(zit; β̂) (6)

Importantly, the expected squared forecast errors of return predictions based on (5) could be
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decomposed as the sum of three terms, given by

Et

[
(ri,t+1 − f(zi,t; β̂))2

]
=
(
Et(ri,t+1)− Et(f(zi,t; β̂))

)2

︸ ︷︷ ︸
Bias2

+Et

(
f(zi,t; β̂)− Et(f(zi,t; β̂))

)2

︸ ︷︷ ︸
V ariance

+Vt(εi,t+1).

(7)

The first term in the right hand side of (7), popularly known as “squared-bias”, measures

the model misspecification of f(.) in estimating the true risk premia. The second, known as

“variance”, quantifies parameter uncertainty. The ex-ante predictive standard errors, which are

the main focus of this paper, exactly equal the square root of the variance component. The final

term, known as “irreducible-variance”, captures the realized return variation due to unpredictable

new information. Under the assumption that Vt(εi,t+1) is constant across the stocks, the squared-

bias and variance components wholly determine the cross-sectional variation in squared forecast

errors. These components also explain the squared forecast errors’ time-series variation.

Remark-1: Ex-post squared forecast errors of risk premium predictions based on simple linear

models are challenging to predict ex-ante. Such models comprise few parameters and thus yield

small predictive standard errors. However, they are grossly misspecified when the true risk pre-

mia are non-linear functions of many predictors. Hence, squared-bias rather than variance largely

governs their forecast-squared errors. Because true risk premia are unobserved, ex-ante measure-

ment of squared-bias is not possible, rendering simple models’ forecast-squared errors unpredictable

ex-ante.

Remark-2: In contrast, ex-post forecast errors of ML-based predictions are ex-ante pre-

dictable. These predictions use many predictors and parameters and thus are less likely to be mis-

specified. However, their massive predictive standard errors, which reflect parameter uncertainty,

predominantly determine their forecast-squared errors. These standard errors, unlike biases, are

readily obtainable, rendering ML models’ forecast-squared errors predictable ex-ante. For instance,

in the cross-section, stocks whose ML-based risk premium predictions have large ex-ante standard

errors also have large ex-post squared forecast errors.

Consistent with these remarks, the empirical section documents that the ex-ante predictive

standard errors of the NN-based risk premium predictions strikingly predict their ex-post squared

forecast errors, whereas those of the Lewellen-based predictions do not. The following subsection

illustrates how these ex-ante standard errors could be used in real-time to form desirable investment

portfolios that yield large economic gains.

B. Risk Premium Predictions, Standard Errors and Investment Portfolios

This subsection introduces the Confident-HL portfolios that deliberately exclude or downweight

stocks with large predictive standard errors from the extreme predicted-return decile stocks. I
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restate the example provided in the introduction to illustrate why these portfolios yield superior

expected returns relative to the conventional HL strategies.

Example-1. Consider two stocks A and B with true risk premia µA and µB (< µA), respec-

tively. Let µ̂A and µ̂B be the predicted risk premia based on an econometric model, satisfying

µ̂A = µA + εA, µ̂B = µB + εB, εA, εB ∼ N(0, σ2), εA ⊥ εB. (8)

Recall that the assumption of unbiased predictions (E(εA), E(εB) = 0) is more likely to hold for ML-

based rather than traditional linear models. For simplicity, (8) assumes uncorrelated predictions

with the same predictive standard error, σ. Proposition-1 relaxes this assumption and generalizes

for heteroskedastic standard errors.

The expected return of the traditional HL portfolio that goes long (short) on the stock with

the highest predicted risk premium is then given by

E(HL) = (µA−µB)P (µ̂A > µ̂B)+(µB−µA)P (µ̂B > µ̂A) = (µA−µB)

[
2Φ

(
µA − µB√

2σ

)
− 1

]
, (9)

where P (.), Φ(.) denote the probability and standard normal distribution measures, respectively.

Thus, (9) indicates that the expected HL return monotonically increases (decreases) with the

precision of risk premium predictions (σ). Mathematically, the prediction uncertainty induces bias

to the maximum possible expected HL return that can be obtained when true risk premia are

known. For example, the HL strategy formed from the zero standard error predictions delivers

the maximum possible expected return of (µA − µB), as the strategy always takes the long (short)

position on A (B) by perfectly ranking the stocks. In contrast, the HL portfolio formed from grossly

imprecise predictions (σ = ∞) earns zero expected returns, with a bias of (µA − µB). This result

follows from Jensen’s inequality: “ The expectations of the maximum (minimum) of a given set of

risk premium predictions are lower (higher) than the maximum (minimum) of the expectations of

predicted risk predicted risk premia”. The lower the variance of risk premium predictions, lower

will be the difference between both.

The following proposition builds on this intuition and formally establishes the Confident-HL

strategies’ superiority over the conventional HL portfolios.

Consider four stocks A1, A2, B1, and B2 with true risk premia µA, µA, µB (< µA), and µB,

respectively. Predictions are unbiased, independent, and normal, but could have different predictive

standard errors. To form trading strategies, stocks are sorted into two quantiles, denoted by QS

and QL. QL (QS) comprises the two stocks with the highest (lowest) risk premium predictions.

Now, consider the following three long-short investment strategies:

1. HL: The traditional HL strategy takes the EW long (short) positions on the 2 QL (QS)

stocks.
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2. PW-HL: The “precision-weighted” (PW) HL portfolio also takes the long (short) positions

on the two QL (QS) stocks, but overweights (> 50%) the precisely predicted stock in each

quantile.

3. Confident-HL: This strategy takes the long (short) position only on the stock with the lowest

predictive standard error in each quantile, deliberately excluding the stock with imprecise risk

premium.

Then, the expected returns of these portfolios are in the order of

Proposition 1:

E(HL) ≤ E(PW-HL) ≤ E(Confident-HL). (10)

Proof. See Appendix (A.1).

The proof is similar to the previous example. Thus, proposition-1 indicates that the Confident-

HL portfolios dominate the traditional HL portfolios in terms of earning higher expected returns.

Proposition-1 makes the stylized assumption of uncorrelated predictions for mathematical tractabil-

ity, as it is not possible to generalize this result with correlated predictions. However, Internet Ap-

pendix C.C1 (table A) presents an extensive simulation study to validate proposition-1 for general

cases with many stocks, correlated return predictions and Confident-HL portfolios formed from

various other quantile portfolios (e.g., decile).

Consistent with these results, the empirical section documents large economic gains emanating

from the Confident-HL portfolios based on the NN-3 risk premium predictions and their standard

errors. Such large gains would not be realized from the Lewellen-based Confident-HL portfolios, as

their predictive standard errors do not predict their squared forecast errors.

Before deriving NN-based risk premia’s predictive standard errors to form the Confident-

HL portfolios, it is worth emphasizing a couple of important points. First, dropping stocks with

imprecise risk premia improves the expected returns of HL strategies, not necessarily their variance,

as it may reduce the diversification benefit. Determining the trade-off between expected HL returns

and their variances is ultimately an empirical question. The empirical section shows that the

Confident-HL portfolios formed using the standard decile-sorted rules deliver superior Sharpe ratios,

suggesting that the expected return improvements are relatively larger. Second, the Confident-HL

strategies exploit information only from the variance of risk premium predictions and not predicted

return variances nor covariances. Forming optimal portfolios using all stock returns’ joint predictive

density requires a Bayesian framework, thus left for a future study.
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III. NN-based Risk Premia and Standard Errors

This section presents the statistical framework to predict individual stock- and portfolio-level

risk premia using NN. It then theoretically derives their standard errors, shown to be easily ob-

tainable with no additional computation cost. In particular, an NN that employs a specific reg-

ularization known as “dropout” is identical to a Bayesian NN with a similar structure (Gal and

Ghahramani (2016)). A simple analogy to this identity is the equivalence between linear regressions

with L2 regularization (i.e., Ridge regressions) and Bayesian linear regressions. Thus, NN-based

predictive standard errors are estimated using the comparable Bayesian models’ instantly available

posterior variances.

Although Bayesian posterior variances and frequentist standard errors philosophically repre-

sent different entities, the section justifies why and how the obtained standard errors satisfy critical

frequentist properties with accurate coverage probabilities. This is important, because no frequen-

tist alternative currently exists (to my knowledge) to provide standard errors.

A. Neural Networks

Figure 1. Example of a 1-layer Neural Network

b1

x1

x2

x3

Input layer

b2

h1,1

h2,1

h3,1

h4,1

Hidden

layer

y

Output

layer

Note: An example of a 1-layer, feed-forward neural network.

Like GKX, this paper considers conventional “feed-forward” NNs, which consist of an “input

layer” of raw predictors, one or more “hidden layers” and an “output layer” of a final prediction,

in that order. Each layer is composed of neurons that aggregate information from the neurons of

(immediately) preceding layer. Thus, information hierarchically flows from the raw predictors of

12



the input layer to the neurons in the hidden layers and finally to the final prediction in the output

layer. To understand how NNs systematically conduct this prediction exercise, figure (1) shows

a simple example of a 1-layer NN (NN-1) with 3 and 4 neurons in the input and hidden layers,

respectively.

In figure (1), {x1, x2, x3}, {hk,1}4k=1, and y are the sets of neurons in the input, hidden, and

output layers, respectively. Furthermore, {xi}3i=1 are raw individual predictors, and y is the final

output prediction. Each neuron in the hidden layer applies a nonlinear function (φ) to an aggregate

signal received from the preceding (input) layer. The aggregate signal is a weighted sum of the

preceding layer’s neurons plus an intercept, known as “bias”. Thus,

hk,1 = φ

b1k +
3∑
j=1

w1jkxj

 , for k = 1, 2, 3, 4, (11)

where b1k is the intercept associated with the input (first) layer and kth neuron in the (next) hidden

layer, and w1jk is the weight associated with the jth predictor (neuron) in the input layer and the

kth neuron in the hidden layer. The linear sum, (b1k +
∑3

j=1w1jkxj), is the aggregated signal

received by the hidden layer’s hj,1 neuron from the input layer. In the spirit of GKX, the nonlinear

function φ takes the rectified linear unit functional form (ReLU). However, the theory developed

in this section holds for any general function. The ReLU is given by

φ(x) = ReLU(x) =

0 if x < 0

x otherwise.
(12)

Likewise, the final output is given by

youtput = b2 +

4∑
j=1

w2jhj,1, (13)

where w2j is the weight associated with the jth neuron in the hidden layer and the output. Thus,

given an input of Q individual predictors, x, the final prediction, youtput, based on a general NN-1

model with K hidden neurons can be expressed in the parametric form

youtput = b2 + φ(b1 + xW1)W2, (14)

where {W1,W2, b1, b2} are the unknown parameters. W1 and W2 are the weight matrices connecting

the imput layer to the hidden layer and hidden layer to the output layer, respectively. Intercepts

b1 and b2 are added to the hidden and output layers, respectively. W1 is a Q×K matrix, W2 is a

K × 1 vector, b1 is a K × 1 vector, and b2 is a scalar.
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B. Parameter Estimation, Regularization, and Dropout

For simplicity, the rest of the section focuses on NN-1 models. However, the theory that follows

holds in general for any feed-forward NN with an arbitrary number of hidden layers and neurons.

Consider the return prediction specification in (5),

rit+1 = f(zit;β) + ηi,t+1, (15)

where ri,t+1 is stock i’s excess return at period t + 1, and zit is the set of stock i’s raw predictors

at time t. When f is an NN-1, it takes the parametric form in (14), with β = {W1,W2, b1, b2}.

Because the parameters are unknown, risk premia are measured as Et(ri,t+1) ≈ f(zit; β̂), where

β̂ are estimated parameters of β. Given a panel of “training data”, the literature typically minimizes

the mean of squared forecast errors to estimate the parameters, i.e

β̂ = arg min
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(ri,t+1 − (b2 + φ(b1 + zitW1)W2))2 , (16)

where Tr is the training sample over NTr periods, and S is the total set of NS stocks. The estimated

parameters from (16) often overfit the data by taking extreme values. To alleviate this concern,

the literature adds various penalties such as L2 regularization to the usual squared forecast error

loss function. Under L2 regularization, the estimated parameters are given by

β̂λ = arg min
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(ri,t+1 − (b2 + φ(b1 + zitW1)W2))2

+ λ
[
||W1||2 + ||W2||2 + ||b1||2 + ||b2||2

]
, (17)

where ||.|| represents the L2 norm operator, and λ is known as the “hyperparameter”. Note that

the estimated parameters depend on the hyperparameter λ. From a given set of hyperparameters,

the standard practice chooses the λ that minimizes the forecast-squared error mean in a panel of

“validation data” that do not overlap with the training data. In particular,

λ = arg min
λ∈Λ

1

NVNS

∑
t∈V

∑
i∈S

(
ri,t+1 − f(zit, β̂λ)

)2
, (18)

where V is the validation sample over NV periods, and Λ is a given set of hyperparameters.

Thus, (17) and (18) together determine the estimated parameters and hyperparameters. Be-

cause the optimal parameters that minimize (17) are not available in closed-forms, numerical algo-

rithms start with an initial estimate (guess), and then iteratively update the parameters by feeding

each observation into the training data one-by-one. This procedure could be computationally in-

tensive. Thus, a popular algorithm known as stochastic gradient descent (SGD) considers random
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samples (rather than the full sample) from the training data to iteratively update the parameters

until they converge.9

Besides L2, GKX use several other regularizations, such as L1, to minimize overfitting. This

subsection introduces another popular regularization known as dropout that can be employed either

exclusively or simultaneously with other penalties. Dropout stands out among others because it

boosts the performance of NN models and helps determine predictive standard errors. GKX do

not discuss the dropout procedure. In a recent working paper, Chen et al. (2020) use dropout to fit

various NNs for predicting stock returns. However, they do not address how such a regularization

could be exploited to obtain predictive standard errors.

Dropout. Dropout is a simple but powerful regularizations proposed by Srivastava, Hinton,

Krizhevsky, Sutskever, and Salakhutdinov (2014).10

Figure 2. NN-1 with Dropout Regularization

Note: The figure shows an NN-1 with dropout regularization. At each training iteration, a random

subset of all neurons in one or more layers, including the input layer, but always excluding the

output layer, is dropped. Each iteration’s dropped out neurons temporarily output 0 (during that

iteration), but might become active in the next iteration.

At each training iteration during parameter estimation, every neuron, including the input

neurons, but always excluding the output neurons, has a probability (1 − p) of being temporarily

dropped. These dropped out neurons are deliberately set to output 0 (equivalently, discarded)

during that iteration but are allowed to become active in the next iteration. Like λ for L2, (1− p)
9See GKX for a detailed review of parameter estimation using SGD.

10See Géron (2019) for an excellent non-technical summary on dropout regularization.
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(p) is a hyperparameter known as “dropout rate” (“retention rate”), and thus chosen (typically

between 10% and 50%) to minimize the validation forecast-squared error. After training and

obtaining estimated parameters, neurons are no longer dropped (i.e., to make a new prediction).

Figure (2) shows an example of an NN-1 with dropout regularization.

To summarize, during parameter estimation, dropout randomly disconnects a few neurons

at each iteration to avoid overfitting and improves performance. Consider a random sample of

1000 observations from training data for parameter estimation. The SGD algorithm takes 1000

iterations to estimate the parameters. Employing dropout would imply 1000 different NNs are

trained, yielding 1000 distinct estimated weights. These weights are not independent but are

nevertheless all different. The final estimated weights could be interpreted as an average of these

distinct weights, thereby alleviating parameter uncertainty.

Estimated parameters of an NN-1 that employ dropout and L2 regularizations satisfy

β̂λ,p = arg min
β

1

NTrNS

∑
t∈Tr

∑
i∈S

(ri,t+1 − (b2 + φ(b1 + zit(p1itW1))(p2itW2)))2

+ λ
[
||W1||2 + ||W2||2 + ||b1||2 + ||b2||2

]
, (19)

where each element in p1it and p2it is an independent draw from a Bernoulli distribution with

parameter (p) ((1-dropout rate)). p1it and p2it are (Q × Q) and (K × K) diagonal matrices,

respectively. Thus, unknown parameters could be estimated by solving (19).11 Hereafter, an NN

that employs L2 and dropout regularizations will be called a “dropout NN”.

Stock-level risk premia. Given newly observed “test data” (Te) of raw predictors that

do not overlap with the training and validation data sets, a dropout NN-1-based risk premium

prediction is given by

Et(r
∗
i,t+1) ≈ E∗it,Dropout = (b2,{λ,p} + φ(b1,{λ,p} + z∗itW1,{λ,p})W2,{λ,p}), r

∗
i,t+1, z

∗
it ∈ Te, (20)

where the parameters, {b2,{λ,p}, b1,{λ,p},W1,{λ,p},W2,{λ,p}}, are given in (19). E∗it,Dropout represents

the dropout NN-1-based risk premium prediction of stock i at period t. Note that no neurons

are dropped out while making predictions on the test data. However, these predictions rely on

estimated parameters that employ dropout regularization. In fact, Srivastava et al. (2014) establish

that the predictions given in (20) are approximately equal to the sample averages of corresponding

predictions that employ dropout at the test time as well. In particular,

E∗it,Dropout ≈
1

D

D∑
d=1

(b2,{λ,p} + φ(b1,{λ,p} + z∗it(p1idW1,{λ,p}))(p2idW2,{λ,p})), r
∗
i,t+1, z

∗
it ∈ Te, (21)

11The most commonly used software programs, including Python and Matlab, readily solve (19).
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where each element in {p1i,d, p2i,d}Di=1 is an independent draw from ∼ Bernoulli(p), and D is the

total number of distinct predictions drawn at the test time with dropout applied.

Portfolio-level risk premia. The risk premium prediction, E∗Pt,Dropout, of portfolio P formed

using a set of stock-level weights {ωP,i,t}Si=1 at the beginning of period t+ 1 is given by

Et(r
∗
P,t+1) =

S∑
i=1

ωP,i,tr
∗
i,t+1 ≈ E∗Pt,Dropout ≈

S∑
i=1

ωP,i,tE
∗
it,Dropout, r

∗
i,t+1 ∈ Te, (22)

where E∗it,Dropout is given in (21).

Importantly, it turns out that the risk premium estimates in (20) (or (21)) and (22) are

approximately equal to the respective risk premia’s posterior density means under an equivalent

Bayesian NN with a similar structure. Using this approximation but before formally discussing

Bayesian NNs, the following subsection illustrates how to instantly obtain standard errors of general

dropout NN-based risk premium predictions.

C. Standard Errors of Risk Premium Predictions based on Neural Networks

Stock-level standard errors. Given a new observation of a stock’s raw predictors z∗it in the

test data, consider its risk premium prediction based on a dropout NN-1

Et(r
∗
i,t+1) ≈ E∗it,Dropout = (b2,{λ,p} + φ(b1,{λ,p} + z∗itW1,{λ,p})W2,{λ,p}), ri,t+1, z

∗
it ∈ Te. (23)

Then the predictive standard error of E∗it,Dropout is estimated by the sample standard deviation of

distinct predictions that are obtained by randomly dropping out neurons (with probability (1− p))
at the test (prediction) time. In particular,

SEt(E
∗
it,Dropout) =

√√√√ 1

D

D∑
d=1

(
Êi,d,t+1 −

1

D

D∑
d=1

Êi,d,t+1

)2

, (24)

where D is the total number of distinct predictions (Êi,d,t) drawn, with each Êi,d,t given by

Êi,d,t = (b2,{λ,p} + φ(b1,{λ,p} + z∗it(p1dW1,{λ,p}))(p2dW2,{λ,p})), z
∗
it ∈ Te. (25)

Every element in p1,d, p2,d is an iid draw from the Bernoulli(p) distribution. The empirical section

considers D = 100 to estimate the standard errors, as simulations confirm that it yields well-

calibrated estimates.12

To summarize, after estimating an NN-1 model’s weights using the training and validation

12The higher D is, the more accurate uncertainty estimates will be. However, inference time also increases with
D. Thus, an ideal D trades-off between latency and accuracy.
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data sets, standard errors of risk premium predictions on the test data are quickly available by

collecting predictions that deliberately assign 0 to randomly selected weights. Intuitively, as the

following subsection shows, this procedure is equivalent to drawing samples from the risk premium’s

predictive distribution based on a comparable Bayesian NN having the same number of neurons

and hidden layers as the considered NN-1.

Portfolio-level standard errors. Likewise, the predictive standard error of a portfolio-level

prediction is given by

SEt(E
∗
Pt,Dropout) =

√√√√ 1

D

D∑
d=1

(
ÊP,d,t −

1

D

D∑
d=1

ÊP,d,t

)2

, (26)

where

ÊP,d,t =

S∑
i=1

ωP,i,t
(
b2,{λ,p} + φ(b1,{λ,p} + z∗it(p1dW1,{λ,p}))(p2dW2,{λ,p})

)
, z∗it ∈ Te, (27)

and p1,d, p2,d are iid draws from Bernoulli(p).

The procedure for computing portfolio-level standard errors deserves emphasis. Note that the

dropped weights (i.e., p1d, p2d draws) are the same across the stocks that composite P , thereby

preserving correlations among stock-level risk premium predictions to yield unbiased standard error

estimates, as shown in the following subsection.

The outlined procedure for obtaining standard errors in (24) and (26) generally applies to all

predictions based on NNs with an arbitrary number of layers and neurons as long as their weights

are estimated using dropout and L2 regularizations. The procedure is also robust to adding more

regularizations, such as implementing the SGD algorithm with an arbitrary learning rate.

It is worth emphasizing that (24) and (26) yield standard errors of risk premium predictions

and not excess return predictions. Fama and French (1997) and Pástor and Stambaugh (1999)

also compute risk premium estimates’ standard errors. Recall that realized excess returns equal

the sum of risk premia and unexpected returns due to unpredictable new information. Thus,

their predictive variances equal the sum of predictive variances of risk premium predictions and

“irreducible-variance” due to unexpected returns (see (7)). The validation data’s mean squared

error is an asymptotically unbiased estimate of irreducible-variance (Zhu and Laptev (2017)). Thus,

predictive variances of return predictions are easily obtainable as well.

D. Dropout Neural Networks and Bayesian Interpretation

This subsection illustrates a profound connection between dropout NNs and Bayesian NNs to

formally validate the previously presented standard errors under a Bayesian framework.
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In an influential work, Gal and Ghahramani (2016) first prove that dropout NNs are Bayesian

NNs. In doing so, they draw upon the probability theory of Gaussian processes, thereby limiting the

potential audience for their work. Moreover, they show how to estimate standard errors of individual

NN-based “raw” predictions (analogous to return predictions) but not those of “prediction means”

(equivalent to risk premium predictions). They also do not discuss how to obtain “joint densities”

of different NN-based predictions, which are necessary to compute portfolio-level standard errors.

I use a simple Bayesian model to provide a straightforward but rigorous discussion of their

central conclusions. In a significant contribution, I (Bayesian) theoretically derive the standard

errors (24, 26) of stock and portfolio-level risk premia.

Bayesian Neural Network. Consider the Bayesian NN analogous to the previously consid-

ered NN-1, with the parametric form given by

ri,t+1 = b2 + φ(b1 + zitW1)W2 + ηi,t+1, Et(η
2
i,t+1) = σ2

η (28)

where the parameters {W1,W2} are random. σ2
η and b = ({b1, b2}) are assumed to be known for

simplicity.13 Denote the risk premia by µit, where

µi,t = Et(rit+1) = b2 + φ(b1 + zitW1)W2. (29)

Specify the unknown weight matrices with the standard Gaussian priors,

[W1,W2] = N (0, l−2I),

where I is the (NK + K) × (NK + K) identity matrix, and l is a hyperparameter. Then the

predictive density of stock i’s risk premium given a set of its raw predictors, z∗it, from the test data,

and the past training and validation data sets, denoted by {R,Z}, is given by

P (µ∗i,t|z∗it, R, Z) =

∫
P (µ∗i,t|z∗it, R, Z,W1,W2, b, σ

2
η)P (W1,W2|R,Z, b, σ2

η)dW1dW2, (30)

where P (W1,W2|R,Z, b, σ2
η) is the posterior density of the weight matrices given past data. Because

this density is not available in a closed-form, the literature often uses one of the powerful methods

known as variational inference (VI) to directly approximate the intractable posterior.

The following discussion introduces VI and shows that approximating the posterior of the

weight matrices using VI and frequentist estimation the weights with dropout and L2 regulariza-

tions, as in (17), are equivalent. Thus, dropout NNs are approximations to Bayesian NNs.

Variational Inference (VI). To approximate a given posterior density P (W |data), VI first

13The theory generalizes when {b1, b2} are allowed to be random as well, in which case these parameters could be
specified with Gaussian priors.
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considers a family of some known densities, {qθ(W )}, parameterized by θ, and then finds the optimal

parameter, θ∗, such that the Kullback-Leibler divergence between qθ∗(W ) and the true posterior

density is minimized. Thus, VI approximates the true posterior with qθ∗(W ), where the optimal

parameter θ∗ would be a function of data. The key is to consider a “good” family of densities that

guarantee the (almost surely) convergence of qθ∗(W ) to the true posterior.14 As a reference, in

the finance literature, Allena and Chordia (2020) develop the first VI method to approximate the

intractable posterior density of true stock liquidity and equilibrium prices.

Variational Inference for Bayesian Neural Networks. Gal and Ghahramani (2016) con-

sider the following family of independent Gaussian mixture densities to approximate the posterior

of the NN weight matrices

q{M1,M2}(W1,W2) = qM1(W1)qM2(W2), with qMi(Wi) =

Ki∏
k=1

qmiq(wiq), for i = 1, 2, where

qmiq(wiq) = pN (miq, σ
2I) + (1− p)N (0, σ2I) for i = 1, 2, (31)

with M1 = [(m1q)] and M2 = [(m2q)]. These are the “variational” parameters to be optimized.

Also, W1 = [(w1q)] and W2 = [(w2q)]. σ
2 and p are known scalars. Ki is the number of neurons in

the ith layer. Thus, K1 = Q and K2 = K. M1 and M2 are matrices with the same dimensions as

W1 and W2, respectively.

The optimal set of parameters {M∗1 ,M∗2 } that best approximate the true posterior is given by

{M∗1 ,M∗2 } = arg min
{M1,M2}

KL
(
qM1(W1)qM2(W2)||P (W1,W2|R,Zb, σ2

η)
)
, (32)

where KL(x||y) represents the Kullback-Leibler divergence between the two random variables, x

and y.

Bayesian and Dropout Neural Network Equivalence. Interestingly, given the sample

of training data, it turns out that the optimal parameters in (32) minimize the loss function that

resembles a dropout NN’s loss function, as in (19). In particular,

{M∗1 ,M∗2 } = arg min
{M1,M2}

1

NTrNS

∑
t∈Tr

∑
i∈S

(ri,t+1 − (b2 + φ(b1 + zit(p1itM1))(p2itM2)))2

+ µ1||M1||2 + µ2||M2||2 + µ3||b1||2 + µ4||b2||2, (33)

where each element in p1it and p2it is an independent draw from a Bernoulli distribution with

14See Blei, Kucukelbir, and McAuliffe (2017) for an excellent review of VI. They address two fundamental questions:
i) what family of densities to consider? ii) how to obtain the optimal density in the family that best approximates
the true posterior?
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parameter (p). {µ1, . . . µ4} are different scalars that are distinct functions of {l1, σ2
η, σ

2}.

Thus, for an appropriate choice of l1, the variational parameters, {M∗1 ,M∗2 }, that best ap-

proximate the (Bayesian) NN weight matrices’ posterior density are identical to the comparable

(frequentist) dropout NN’s estimated weights. This implies

M∗1 = W1,{λ,p}, and M∗2 = W2,{λ,p}. (34)

The predictive density of a risk premium given in (29) can be approximated by

P (µ∗i,t|z∗it, R, Z) ≈ Q(µ∗i,t|z∗it, R, Z) =

∫
P (µ∗i,t|z∗it, R, Z,W1,W2, b, σ

2
η)qM∗1 ,M∗2 (W1,W2)dW1dW2,

(35)

where {M∗1 ,M∗2 } are given in (34), and q(.) in (31).

As an immediate corollary, (35) implies that the mean of a risk premium’s (approximated)

Bayesian predictive density is

E
[
Q(µ∗i,t|z∗it, R, Z)

]
≈ E∗it,Dropout

≈ 1

D

D∑
d=1

(b2,{λ,p} + φ(b1,{λ,p} + z∗it(p1idW1,{λ,p}))(p2idW2,{λ,p})), z
∗
it,∈ Te, (36)

where each element in p1id, p2id ∼ Bernoulli(p).

Thus, the mean of a risk premium’s Bayesian predictive density (36) precisely matches with

the comparable dropout NN-based risk premium prediction, as in (21). In simpler words, predicting

risk premia using dropout NNs and Bayesian NNs are equivalent.

Bayesian Justification for Stock-level Standard Errors. Due to (36), under usual reg-

ularity conditions (e.g., prior mass is not concentrated at a single point), and for large data, the

standard deviation of a risk premium’s Bayesian predictive density should proxy for the standard

error of its frequentist counterpart (E∗it,Dropout).
15 This implies

SEt(E
∗
it,Dropout) = SD

[
Q(µ∗i,t|z∗it, R, Z)

]
, (37)

where SD
[
Q(µ∗i,t|z∗it, R, Z)

]
represents the standard deviation of µ∗i,t’s Bayesian predictive density.

This is given by the following proposition.

15This property, known as “frequentist consistency” of posteriors, is due to the Bernstein-von Mises theorem.
Whereas literature often demonstrates this result for true posteriors, Wang and Blei (2019) establish that, under
standard regularity conditions, approximated posteriors using VI are consistent as well. In any case, the following
subsection empirically validates this result.
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Proposition 2:

SD
[
Q(µ∗i,t|z∗it, R, Z)

]
≈

√√√√ 1

D

D∑
d=1

(
Êi,d,t −

1

D

D∑
d=1

Êi,d,t

)2

, (38)

where Êi,d,t is given in (25).

Proof. See Appendix (A.2).

Thus, the standard errors of dropout NN-based stock-level risk premium predictions, as in

(24), are justified from a Bayesian standpoint.

Bayesian Justification for Portfolio-level Standard Errors. Likewise, the standard

error of a portfolio P ’s risk premium prediction should satisfy

SEt(E
∗
Pt,Dropout) = SD

[
Q(µ∗P,t|{z∗it}Si=1, R, Z)

]
, (39)

where µ∗P,t =
∑S

i=1 ωP,i,tµ
∗
i,t+1, and Q(µ∗P,t|{z∗it}Si=1, R, Z) is the Bayesian predictive density of P ′s

risk premium, given a set of stock-level characteristics.

Obtaining this density is not straightforward, as it involves computing the joint predictive

density of risk premia of all stocks that compose P , Q
(
µ∗1,t, µ

∗
2,t, . . . , µ

∗
S,t|{z∗it}Si=1, R, Z

)
. The

following proposition formally derives the joint density to compute the standard deviation of P ’s

posterior risk premium density.

Proposition 3:

SD
[
Q(µ∗P,t|{z∗it}Si=1, R, Z)

]
≈

√√√√ 1

D

D∑
d=1

(
ÊP,d,t −

1

D

D∑
d=1

ÊP,d,t

)2

, (40)

where ÊP,d,t are given in (27).

Proof. See Appendix (A.3).

Thus, the standard errors of dropout NN-based portfolio-level risk premium predictions, as in

(26), are theoretically justified as well.

E. Frequentist Justification for Standard Errors

Recall that the paper trades the Bayesian standard errors for the frequentist standard errors,

as the former are instantly available but no valid method exists to compute the latter directly.
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This subsection justifies the obtained standard errors from a frequentist standpoint, by drawing

the equivalence between both standard errors and conducting extensive Monte-Carlo simulations.

Under a large sample, observed data dominates prior, rendering Bayesian and frequentist

standard errors nearly identical (see result 8 in section 4.7 of Berger (1985)). However, NN-based

predictions generally employ substantial regularization, which is equivalent to starting with proper

priors. In such cases, data may not always dominate prior, resulting in differences between the

Bayesian and frequentist approaches under specific parameters. However, such issues typically

occur at the atypical values of the parameters, such as when they approach infinity (Kyung, Gill,

Ghosh, and Casella (2010)).16 Thus, for a wide range of parameters, Bayesian and frequentist

standard errors should be equivalent.

Consistent with this result, an extensive simulation study in appendix B.1 (table (I)) confirms

that the proposed standard errors are well-calibrated in the frequentist sense. Using a high di-

mensional predictor set, risk premia are simulated from four different data generating processes.

Whereas the first two model returns as a linear function of predictors with homoscedastic and

correlated residuals, respectively, the last two entertain non-linear functions. Across all models,

95% (or any x% with 0 < x < 100) confidence intervals constructed from risk premium predictions

and their standard errors cover the true simulated risk premia with nearly 95% (x%) probability.

IV. Ex-ante Estimation Uncertainty and Ex-post OOS Inferences

Recall that sections II and III showed how to estimate valid standard errors of NN-based risk

premium predictions and exploit them to construct desirable Confident-HL portfolios. This section

derives a formal method to assess the Confident-HL or any model-based investment portfolios’

ex-post OOS performance.

In doing so, the section first documents that existing tests violate the central assumption

required for the DM tests’ asymptotic validity. The section then presents a bootstrap methodology

to deliver valid OOS comparisons in the presence of estimation uncertainty. The section concludes

by showing that the method yields well-sized tests, whereas the DM tests lead to significant size

distortions using simulated data.

A. Out-of-Sample Comparisons with the Diebold and Mariano (2002) Tests

OOS returns of HL strategies and DM tests. Consider any two competing model-based

HL strategies, HL1 and HL2. These portfolio returns could be expressed as different weighted

16In fact, Kyung et al. (2010) motivate the same to compute the otherwise intractable standard errors of LASSO
based predictions using their Bayesian counterparts.

23



sums of excess returns, depending on which stocks comprise their long and short legs. Thus,

HL1t =
∑
i∈S

ŵ1,i,t−1ri,t, HL2t =
∑
i∈S

ŵ2,i,t−1ri,t, (41)

where ri,t denotes the excess return of stock i at period t, and {ŵ1,i,t−1}i∈S and {ŵ2,i,t−1}i∈S repre-

sent the weights with which individual stocks composite the HL1 and HL2 portfolios, respectively.

The weights are estimated using all data until t − 1. This specification is consistent with the

“recursive estimation scheme” typically employed by researchers (e.g., GKX, Bianchi et al. (2020)).

Consider the return differentials over the OOS period,

d12,t = HL1t −HL2t, t ∈ Te, (42)

where Te denotes the OOS test period. Then the DM statistic to test the null of equal return

means, H0 : E(d12,t = 0) ∀t, is a simple t-ratio given by

DMHL =
d̄12

σ̂d12
∼ N (0, 1), (43)

where d̄12 = 1
NTe

∑
t∈Te d12,t is the sample average of return differentials over NTe OOS periods

and σ̂d12 is a heteroskedastic and autocorrelation robust standard error estimate for d̄12. Whereas

Avramov et al. (2020) use Newey-West standard errors of return differentials as a proxy for σ̂d12 ,

most studies use the standard OLS standard errors.

OOS MSEs and DM tests. Likewise, existing studies employ the DM tests to compare

OOS mean squared errors (MSEs) of any two competing models as well. Given two models M1 and

M2, let f1(Zi,t−1; β̂1,t−1), f2(Zi,t−1; β̂2,t−1) be the return predictions for period t based on M1 and

M2, respectively. Then the forecast-squared error differentials over the OOS period are given by

D12,t = e2
1,t − e2

2,t, where e2
k,t =

1

Ns

∑
i∈S

(
ri,t − fk(Zi,t−1; β̂k)

)2
, k = 1, 2, t ∈ Te, (44)

with each e2
k,t representing the cross-sectional average of forecast-squared errors at period t under

Mk, k = 1, 2. Like in the previous case, the model parameters β̂k,t−1 are estimated using all data

until t− 1. Then the DM statistic to test the null of equal predictive ability is given by

DM =
D̄12

σ̂D12

∼ N (0, 1), (45)

where D̄12 = 1
NTe

∑
t∈TeD12,t is the sample mean of squared forecast error differentials and σ̂D12 is

a heteroskedastic and autocorrelation robust standard error estimate of D̄12. GKX use Newey-West
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standard errors of squared forecast error differentials as a proxy for D̄12.17

Asymptotic validity of DM tests. DM emphasize that their tests (43, 45) yield asymp-

totically valid inferences only under the assumption that the loss differentials, {d12,t}{D12,t}, are

covariance stationary. Equivalently,

E(d12,t) = µ1, cov(d12,t, d12,t−τ ) = γ1(τ), ∀t, τ ≥ 0, and (46)

E(D12,t) = µ2, cov(D12,t, D12,t−τ ) = γ2(τ), ∀t, τ ≥ 0. (47)

However, this assumption is violated when the parameters, such as {ŵk,i,t−1}i∈S and β̂k,t−1,

are estimated from econometric models. Their estimation uncertainties introduce arbitrary tempo-

ral dependencies between the loss differentials, thereby breaking down the covariance stationarity

assumption. A simple intuition demonstrates the central idea.

Recall that {ŵ1,k,t−1}i∈S are estimated using all data until t−1. Thus, their precision (variance)

increases (decreases) as time proceeds and more data are available. Consequently, the HL return

differentials exhibit time-varying moments and temporal dependencies, rendering the covariance

stationarity assumption infeasible.

B. Violation of Covariance Stationarity: Empirical Evidence

Consistent with the previous intuition, appendix B.2 (table II) empirically documents that

the loss differentials computed using NN-3 and Lewellen-based return predictions significantly vi-

olate the covariance stationarity assumption. This result reaffirms that the existing DM-based

conclusions are misleading.

In particular, B.2 conducts covariance stationarity tests proposed by Pagan and Schwert (1990)

on three different loss differentials over the 360 OOS months. The first comprises the forecast-

squared error differences between the NN-3 and Lewellen-based return predictions. The second

(third) contains the return differences between the EW (VW) HL portfolios based on the NN-3 and

Lewellen models.

If these loss differentials were covariance stationary, then each of their sample standard devi-

ations over the first 180 periods should be close to those over the last 180 periods. However, the

initial period standard deviations are significantly (5, 1.85, and 1.75 times) higher than those of the

final period. Thus, the null of covariance stationarity is rejected across the loss differentials. Also,

relatively large beginning period standard deviations may reflect a “recursive estimation scheme”,

in which case parameter uncertainty deteriorates as time progresses, when true model parameters

17To be precise, the DM tests were original designed for time-series data. GKX adapted these tests on panel
data by cross-sectionally averaging the forecast-squared errors at each period, as in (44). In a recent working paper,
Timmermann and Zhu (2019) show that this adapted statistic yields asymptotically valid inferences, of course, only
under the assumption that there is no parameter uncertainty.
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are time-invariant.

C. Bootstrap Tests for Out-of-Sample Comparisons

This subsection presents a bootstrap test that accommodates non-stationary loss differentials.

The method builds on the moving block bootstrap procedure of Kunsch (1989). Although it

was initially designed for stationary processes, Gonçalves and White (2002, 2004) establish their

asymptotic validity for non-stationary processes under certain assumptions that govern the degree

of non-stationarity.

First, they assume that the mean heterogeneity of the given series is not too strong. The return

differentials in (42) satisfy this condition, as their unconditional means are the same.18 Second,

they assume that the series is a near epoch dependent on an underlying mixing process (Billingsley

(1999)). This condition is less stringent than “mixing conditions” that researchers, including DM,

typically assume to derive limiting distributions. Importantly, near epoch dependent processes allow

for considerable heterogeneity (of (co)variances) and also for dependence. Thus, their assumptions

suit this paper’s framework.

Why bootstrap works. Recall that the DM tests make two parametric approximations.

The tests use heteroskedastic and autocorrelation standard errors and draw critical values from the

standard normal. Such approximations likely fail under complex scenarios (e.g., when the series

is not stationary). However, bootstrap-based tests do not make such parametric simplifications

and thus likely yield valid asymptotic inferences even in challenging situations. Of course, even

bootstrap could fail under certain circumstances (see section 4.5 from Horowitz (2001)). Thus, the

literature recommends complementary simulation checks, as described in the next subsection.

I now explicitly discuss how to conduct bootstrap-based OOS inferences.

C.1. Tests of equal return means or forecast-squared errors.

Consider a series of loss differentials {∆t}Tt=1. These could be either HL return (d12,t) or

squared forecast error differentials (D12,t). Then the procedure for obtaining critical values, or

p-values, under the null hypothesis H0 : E( 1
T

∑T
t=1 ∆t) = 0 is as follows.

1. Choose a block-size l. For each iteration i,

(a) draw n = (T/l) random numbers, {bi}ni=1, from the set {1, 2, . . . , T−l} with replacement,

(b) draw a block bootstrap sample Di={∆b1 ,∆b1+1, . . .∆b1+l−1; ∆b2 ,∆b2+1, . . .∆b2+l−1;

. . . ; ∆bn ,∆bn+1, . . .∆bn+l−1}, where Di contains a total number of T differentials, and

18It is less clear whether forecast-squared-error differentials theoretically have the same unconditional means.
However, empirical tests suggest that the null of equal means over different periods do not get rejected. This result
supports the assumption laid out by Gonçalves and White (2002).
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(c) impose the null and compute the bootstrap-based t-ratio, ti =
(
D̄i − ∆̄

)
/std(Di), where

D̄i and std(Di) are the sample mean and standard deviation of Di, respectively. ∆̄ is

the sample mean of the original loss differentials.

2. Repeat step (1) many times. The generalized p-value equals the proportion of times the

absolute value of ti is greater than the original sample’s realized absolute t-ratio, which

equals t =
(
∆̄
)
/std(∆), where std(∆) is the sample standard deviation of the loss differentials

{∆j}Tj=1.

The optimal block-size l, shown in the literature to be O(T 1/2), is close to 2 years of data on

a sample over 30 years. Thus, the empirical section uses a block size of 24. However, the results

are qualitatively similar across other block lengths of 6, 12, 18, and 36.

C.2. Tests of equal Sharpe ratios.

I further generalize the procedure to compare OOS Sharpe ratios of any two model-based

investment strategies. Let {HL1t} and {HL2t} be two such series, with squared Sharpe ratios

Sh2
i =

( 1
T

∑T
t=1HLit)

2

1
T

∑T
t=1(HLit − 1

T

∑T
t=1HLit)

2
, for i = 1, 2. (48)

The p-value for testing the null of equal squared Sharpe ratios, H0 : E(Sh2
1) = E(Sh2

2), can be

computed as follows.

1. Choose a block-size l. For each iteration i.

(a) draw n = (T/l) random numbers, {bi}ni=1, from the set {1, 2, . . . , T−l} with replacement,

(b) normalize the returns to impose the null,

HL∗it =
√
T (HLit −

1

T

T∑
t=1

HLit)/

√√√√ T∑
t=1

(HLit −
1

T

T∑
t=1

HLit)2, (49)

(c) draw a block bootstrap sample {Hki} from the normalized returns;

Hki ={HL∗k,b1 , HL
∗
k,b1+1, . . . HL

∗
k,b1+l−1;HL∗k,b2 , HL

∗
k,b2+1, . . . HL

∗
k,b2+l−1;

. . . ;HL∗k,bn , HL
∗
k,bn+1, . . . HL

∗
k,bn+l−1} for k = 1, 2, and

(d) compute the bootstrap-based squared Sharpe ratio difference, Sh2
1i − Sh2

2i.

Sh2
ki =

( 1
T

∑T
t=1Hkit)

2

1
T

∑T
t=1(Hkit − 1

T

∑T
t=1Hkit)2

, for k = 1, 2, where Hkit = tthelement of Hki.
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2. Repeat step (1) many times. The p-value equals the proportion of times the absolute value

of (Sh2
1i − Sh2

2i) is greater than the absolute value of Sh2
1 − Sh2

2.

D. Performance of the Methodology: Monte Carlo Evidence

Extensive simulations in Appendix B.3 reveal that this paper’s bootstrap-based tests are well-

sized. In contrast, DM-based tests lead to massive size distortions.

In particular, (B.3) (figure (3)) simulates return time series with zero means under three

distinct models, each allowing for a different degree of time-varying temporal dependency. It then

conducts the zero return mean tests on the simulated data using three methods that include the

DM-test with OLS standard errors, the DM-test with Newey-West standard errors, and this paper’s

bootstrap method with a block size of 24. Across all simulations, bootstrap-based 5% level tests

yield accurate sizes close to 5%. However, DM-based 5% level tests deliver hugely distorted sizes

between 13% and 42%, depending on how strong the temporal dependencies are.

Figure (4) shows the power curves for the three methods and confirms that bootstrap-based

test “size” refinements come at the expense of only small power losses.

V. Empirical Results

This section presents the main empirical results of the paper. Recall that the theoretical

sections imply two central predictions. (1) Ex-ante precision of NN-based risk premium predictions

proxy for their ex-post forecast-squared errors, and thus (2) the Confident-HL investment portfolios

that deliberately exclude stocks with imprecise risk premium estimates should yield huge OOS

economic gains. I empirically demonstrate both of these predictions.

A. Data, Definitions, and Replication Study

A.1. Data

The sample contains monthly excess stock returns of all individual firms listed in the NYSE,

AMEX, and NASDAQ exchanges between March of 1957 and December of 2016. The data include

26667 total stocks, with an average of more than 6000 stocks per month. The data also comprise a

high-dimensional set of 176 raw predictors examined by GKX and Avramov et al. (2020), including

94 individual stock characteristics analyzed by Green, Hand, and Zhang (2017) (e.g., size, book-

to-market, 1-year momentum returns). Another 74 are industry-sector dummy variables based on

the first two digits of the Standard Industrial Classification codes. The final eight are aggregate
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macroeconomic variables used by Goyal and Welch (2008).19 The Treasury-bill rate proxies for the

risk-free rate.

A.2. Models

Neural Network. The paper primarily focuses on a feed-forward NN with three hidden layers

(NN-3) and 32, 16, and 18 neurons per layer. This model was examined by GKX and Avramov et al.

(2020). I precisely mimic their “recursive scheme” to estimate the model parameters. The scheme

first divides the data into 18 years of training (1957-1974), 12 years of validation (1975-1986), and

30 years (1987-2016) of OOS test samples. It then estimates the parameters and hyperparameters

using objective functions to minimize the training sample’s regularized MSE (17) and the validation

sample’s MSE (18), respectively. At the end of each year, it re-estimates the model parameters,

increasing the training sample by one year. The validation sample rolls forward every year to

include the most recent year’s data, maintaining the same size (12 years).

I implement this estimation framework to obtain risk premium predictions, as well as their

standard errors, over the OOS test sample. Whereas GKX and Avramov et al. (2020) mainly apply

L1 regularization to estimate the parameters, I use dropout and L2. As discussed in section III, this

approach enhances the model’s predictive performance and delivers standard errors of predictions.

I retain the other hyperparameters (e.g., SGD learning rate, Adam optimization, early-stopping)

used by GKX. The Internet appendix tabulates all regularizations with their values.20

Lewellen. To compare the economic gains from NN-3-based risk premium predictions and

their standard errors with those of simple benchmark models, I also examine one of Lewellen

(2015)’s linear models. This Lewellen model predicts stock returns using a pooled regression on

15 firm-level characteristics (e.g., size, book-to-market, accruals, asset growth ratio). The Internet

appendix describes the exact model. This model, unlike NN-3, does not entail regularization. Thus,

to make a fair assessment, I estimate the regression parameters using both training and validation

data-sets. The OOS test data remain the same.

A.3. Definitions of Performance Metrics

I lay out the definitions of ex-ante and ex-post precision measures that I use repeatedly through-

out the rest of the paper.

Ex-ante Confidence. I compute ex-ante confidence of stock-level risk premium predictions

19Besides these 176 predictors, GKX and Avramov et al. (2020) also consider (94 × 8) interactions between
the stock characteristics and macroeconomic variables. They do so as they examine several linear models (e.g.,
Lasso, Instrumented Principal Components) that do not explicitly account for variable interactions. Because NNs
automatically capture such interactions, this paper excludes those additional variables.

20See GKX for a detailed review of these regularizations.
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using their absolute t-ratios

ECit =
|r̂i,t+1|

set(r̂i,t+1)
, (50)

where EC is ex-ante confidence, r̂i,t+1 is the risk premium prediction of stock i at period t (for

t+1) and set(r̂i,t+1) is its ex-ante predictive standard error. |.| denotes the absolute value. Ex-ante

confidence proxying for a prediction’s precision is consistent with the notion that an estimate’s

standard error must always be understood in the context of the estimate’s mean. See section

(C.C3) in the internet appendix for a formal discussion using a simple linear model in the spirit of

the capital asset pricing model.21 However, my central conclusions are the same when I use inverse

standard errors as proxies for precision. Table B in Appendix C.C1 presents the results.

Whereas I calculate the ex-ante confidence of NN-3-based risk premium predictions using the

theory derived in section III, those of Lewellen-based predictions are available in the closed-form

expressions. For example, consider a linear regression model R = Zβ + ε, ε ∼ N(0, σ2), where

R and Z are panels of stock-level returns and characteristics, respectively. Given a stock i’s risk

premium prediction ziβ̂, its standard error equals z
′
i(Z

′
Z)−1ziσ̂

2, where {β̂, σ̂2} are the ordinary

least squares (OLS) estimates of β and σ2, respectively. The OLS standard errors are consistent

with the model specification of GKX, given in (2).22

Ex-post Out-of-Sample-R2. Given a set of risk premium predictions S, I compute their

ex-post OOS R2 using the following measure motivated by GKX

OOS-R2 = 1−
∑

(i,t)∈S(ri,+1 − r̂i,t+1)2∑
(i,t)∈S r

2
i,t+1

, (51)

where ri,t+1 is the realized excess return of stock i at period t+ 1.

A.4. Replication of Gu, Kelly, and Xiu (2020)

To ensure that this paper’s NN-3-based risk premium measurements are comparable with GKX

and Avramov et al. (2020), I replicate their studies. For every period in the OOS test sample, I sort

stocks into deciles, decile-1 to decile-10, according to their NN-3-based return predictions for the

next month. Decile-1 (decile-10) comprises the bottom (top) 10% of stocks with the lowest (highest)

return predictions. Figure 5 (6) presents the EW (VW) average OOS returns and Sharpe ratios of

the decile portfolios. All of these monotonically increase from decile-1 through decile-10, thereby

confirming that the realized OOS returns align with their predictions. Furthermore, the EW (VW)

21Recall that proposition-1 makes a highly stylized assumption of invariant risk premia across the stocks in the
top (bottom) decile. In more realistic scenarios, this assumption does not hold, in which case I argue that considering
the absolute t-ratios as proxies for the precision leads to superior performance relative to the inverse standard errors.
See section (C.C3).

22Alternatively, I also consider Fama-Macbeth standard errors for Lewellen-based risk premia to account for cross-
sectional correlations of residuals. The conclusions are the same.
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HL portfolio that takes long-short positions on the extreme decile portfolios (i.e., decile-10 minus

decile-1) earns an enormous OOS return of 2.51% (1.47%) and an annualized Sharpe ratio of 1.56

(0.96). These results reflect the success of NN-3 in terms of impressive economic gains. They also

qualitatively and quantitatively match with GKX and Avramov et al. (2020), respectively.

Having outlined the data and showing that this paper’s NN-3-based return predictions match

those of the previous studies, I move on to test the theoretical predictions.

B. Ex-ante Confidence and Ex-post Out-of-Sample-R2

I first validate remarks 1 and 2 of section II asserting that the ex-ante precision of NN-based risk

premium predictions significantly predict their ex-post precision, whereas those of Lewellen-based

predictions do not.

Figure 7 confirms this result for NN-3. For every month, I sort stocks into deciles according

to their NN-3-based ex-ante confidence. I then calculate the OOS-R2 attained by these decile

subsamples over the 30-year OOS period. Figure 7 reveals that the ex-post OOS-R2 monotonically

increases with the level of ex-ante confidence. For example, the bottom decile, containing stocks

most imprecisely predicted by NN-3, attains an OOS-R2 of 0.81%. In contrast, the top decile with

the most confident predictions delivers a much improved OOS-R2 of 2.21%. This result reinforces

that the ex-post precision of NN-based predictions is ex-ante predictable.

Table III further shows that these OOS-R2 refinements translate into large economic gains.

In particular, I construct EW (VW) HL portfolios on each of these confident-decile subsamples,

further sorting stocks into deciles according to their next period’s (NN-3-based) return predictions.

Table III demonstrates that the EW (VW) HL portfolios formed on precise deciles earn remarkably

higher OOS returns and Sharpe ratios than those formed on imprecise deciles. For example, the

extremely imprecise decile’s HL portfolio yields a modest 0.88% (0.34) and 0.71 (0.23) average

monthly return and annualized Sharpe ratios, respectively. However, those of the most confident

decile’s HL portfolio are 3.10% (1.59%) and 1.44 (0.80), respectively, nearly 250% (300%) and 100%

(300%) larger than the imprecise decile’s counterparts.

Interestingly, the HL portfolios constructed on deciles 9 and 1 have nearly the same average

return predictions. However, the average realized OOS return of the relatively more precise decile’s

EW (VW) HL portfolio, 2.03% (1.16%), is at least twice (thrice) more than that of the imprecise

decile, 0.88% (1.16). This result is in the spirit of example-1 in section 2, which shows that between

any two sets of stocks with the same risk premium levels, the HL strategy formed on the relatively

precisely predicted set has higher expected returns.

Figure 8 repeats the analysis for Lewellen-based predictions and supports the theory as well.

Their ex-post OOS-R2s, unlike NN-based OOS-R2s, do not monotonically increase with the ex-

ante precision. For example, decile 10, containing the stocks with the highest ex-ante precision,

31



has a markedly lower ex-post OOS-R2 (0.41%) than the OOS-R2 (0.93%) of decile 7 with relatively

lower ex-ante precision. This result is consistent with remark 1, which posits that “bias” rather

than “variance” predominantly determines the ex-post precision of a “simple” model-based predic-

tion, rendering it unpredictable ex-ante. Interestingly, though, predictions from the lowest ex-ante

precision decile (1) also registers awful ex-post OOS-R2. The result perhaps reflects the decile’s

drastically large ex-ante “variances”, which dominate average “biases” across other predictions to

yield cross-sectionally higher ex-post squared forecast errors.

Overall, ex-post OOS-R2s of Lewellen-based predictions are not as conspicuously predictable as

NN-3-based OOS-R2s. Consequently, table III indicates that Lewellen-based HL portfolios formed

on (Lewellen-based) precise deciles do not earn significantly higher OOS returns than those on

imprecise deciles. This result contrasts with the massive economic gains realized by the NN-3 HL

portfolios formed on precise rather than imprecise deciles.

To summarize, this subsection demonstrated that the ex-post squared forecast errors of NN-

3-based predictions are ex-ante predictable. Before moving on to show how the Confident-HL

portfolios exploit this result to yield spectacular economic gains, I first describe the procedure for

forming various HL portfolios.

C. Portfolio Construction

1. EW(VW)-HL. These are the conventional HL portfolios. For every month, I sort stocks

into deciles according to their next month’s return predictions. Let L and H represent the lowest

and highest prediction deciles, respectively. Then the EW(VW)-HL portfolios take EW (VW) long

and short positions on H and L, respectively.

2. EW(VW)-Confident-HL. These portfolios deliberately drop stocks with imprecise risk

premium predictions from the conventional HL portfolios. In particular, both L and H are further

partitioned into deciles, {L1, L2, . . . , L10}, and {H1, H2, . . . ,H10}, based on their ex-ante confi-

dence. Let L10 (L1) and H10 (H1) denote the subsets with the highest (lowest) ex-ante confidence

from L and H, respectively. Then the EW(VW)-Confident-HL portfolios take EW (VW) long and

short positions only on the highest ex-ante confident subsets, H10 and L10, respectively.

3. EW(VW)-Low-Confident-HL. In contrast, these portfolios take EW (VW) long and

short positions on the lowest ex-ante confident subsets, L1 and H1, respectively.

4. PW-HL. Rather than completely ignoring low ex-ante confident subsets, the “precision-

weighted” strategies disproportionately downweight them while forming portfolios. In particular,

the portfolios take long (short) positions on each subset Hj (Lj) with the weights proportional to

1/(11− j), for j = 1, 2, . . . , 10. Thus, the higher a subset’s precision, the more weight it has.

5. LPW-HL. In contrast, the “low-precision-weighted” portfolios take long (short) positions

on each subset Hj (Lj) with the weights proportional to 1/j.
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6. Matching portfolios. To fairly assess the Confident-HL portfolios’ performance, I also

construct several matching strategies. These portfolios, represented by “HLCM”, resemble conven-

tional HL portfolios but are matched to have the same “predicted-return” averages as those of the

Confident-HL portfolios. For example, based on NN-3, the EW-Confident-HL portfolio’s monthly

return predictions average 1.97%. It turns out that a traditional HL strategy that takes EW long

(short) positions on the top (bottom) 5% of stocks with the highest (lowest) return forecasts also

has an average predicted-return of 1.97%. Thus, this strategy serves as an apt benchmark for

EW-Confident-HL. The difference between the two portfolios’ ex-post OOS performance precisely

captures the economic value of dropping stocks with low ex-ante precision.

In general, I construct the matching portfolios as follows. Every month, EW(VW)-HLCM takes

long (short) positions on the top (bottom) x% of the stocks with the highest (lowest) predicted

returns for the next month. I choose x so that the time-series average of EW(VW)-HLCM portfolio’s

predicted return precisely matches that of the EW(VW)-Confident-HL portfolio.23 Likewise, I

construct the “EW(VW)-HLLCM”, “LPW-HLM”, and “PW-HLM” portfolios to match the average

predicted-returns of the EW(VW)-Low-Confident-HL, LPW-HL, and PW-HL, respectively.

7. Double-Sorted portfolios. As an additional robustness check, I consider various double-

sorted predicted-return strategies matched to contain the same number of stocks as the Confident-

HL portfolios. In particular, I partition the extreme predicted return deciles, L and H, into deciles,

{L1,d, L2,d, . . . , L10,d}, and {H1,d, H2,d, . . . ,H10,d}, based on their predicted-returns, respectively.

Let H10,d (L10,d) and H1,d (L1,d) denote the subsets with the highest and lowest predicted returns

from H (L), respectively. Then the EW(VW)-double-sorted-HL portfolios take EW (VW) long and

short positions on the highest and lowest predicted return subsets, H10,d and L10,d, respectively.24

Despite containing the same number of stocks as the Confident-HL portfolios, these strategies (un-

like matching portfolios) do not serve as apt benchmarks for assessing the Confident-HL portfolios’

performance because they have higher predicted-returns by construction. Nevertheless, table C

in Internet Appendix C.C1 reports that the Confident-HL portfolios significantly dominate these

double-sorted portfolios in terms of Sharpe ratios and information ratios.

D. Economic Gains from Confident-HL Portfolios

I now establish the dominance of the Confident-HL over the conventional HL portfolios.

23Because x is determined ex-post, the matching portfolios could be interpreted as counterfactual strategies.
24Simply, the double-sorted portfolios take long (short) positions on stocks that have predicted risk premia higher

(lower) than the top (bottom) 1% of all stocks.
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D.1. OOS Average Returns and Sharpe ratios of Confident-HL Portfolios

Table IV presents the main results. The Confident-HL and precision-weighted (PW-HL) portfo-

lios remarkably outperform the conventional HL portfolios in terms of extensive economic measures.

These measures include the OOS average realized returns, Sharpe ratios, as well as abnormal re-

turns (α) and information ratios relative to Fama and French (2015) augmented to the momentum

factor (FF-5+UMD) and Stambaugh and Yuan (2017) (SY) models. For example, the traditional

EW(VW)-HL portfolio earns an impressive OOS average monthly return of 2.52% (1.48%) and an

annualized Sharpe ratio of 1.5 (0.9). However, the EW(VW)-Confident-HL portfolio outperforms

this strategy with the same measures of 3.61%(2.21%) and 1.75 (1.09). These are massive 43%

(49%) and 17% (21%) increases, respectively. Likewise, the PW-HL also outperforms the EW-HL

with an average return and Sharpe ratio of 2.87% and 1.67, respectively.

Note that the matching EW(VW)-HLCM and the EW(VW)-Confident-HL portfolios have the

same average NN-3-based predicted-returns. However, the former yields a considerably lower aver-

age return and Sharpe ratio than the latter. The 0.54% (0.48%) monthly return difference between

the two signifies the economic value of incorporating the ex-ante precision information into forming

NN-3-based HL portfolios. In contrast, the Low-Confident-HL and low-precision-weighted (LPW-

HL) portfolios containing stocks with imprecise risk premium predictions underperform the tradi-

tional HL and Confident-HL portfolios. For example, although the EW(VW)-Low-Confident-HL

portfolio has higher average predicted-returns than that of the EW(VW)-HL, it earns a drastically

lower average-return and Sharpe ratio. Particularly, the VW-Low-Confident-HL strategy’s annu-

alized Sharpe ratio and the FF-6-adjusted and SY-adjusted information ratios are almost or even

less than half the corresponding measures of the VW-HL portfolio. This result demonstrates the

enormous imprecision of Low-Confident-HL portfolios.

Table IV reveals that the expected returns of the EW-HL, PW-HL, and EW-Confident-HL

portfolios are in increasing order, thus validating proposition-1 of section II. Of course, all inferences

drawn so far are based on the OOS point-estimates of various economic measures. To establish

their statistical significance, I conduct pairwise comparisons using the moving block bootstrap tests

developed in section IV.

Table V presents the bootstrap results, and the central conclusions are the same. The OOS

annualized squared-Sharpe and squared-information ratio differences between the Confident-HL

and conventional HL portfolios and between the Confident-HL portfolios and their matching HL

strategies are significant at the 1% level. Likewise, the corresponding differences between the

PW-HL and conventional EW-HL portfolios and between the precision-weighted HL portfolio and

its matching HL strategy are also significant at 1%. Even the OOS average return and alpha

differences between the Confident-HL and conventional-HL are significant at 1%. Thus, these

results statistically validate the superiority of the Confident-HL portfolios.
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Similarly, squared Sharpe and squared information ratios of the low-Confident-HL and low-

precision-weighted-HL (LPW-HL) portfolios are significantly lower than those of their matching

portfolios and the conventional HL portfolios at the 1% level. Interestingly, though, a seemingly

large 0.17% monthly average return difference between the EW(VW)-HL and EW(VW)-Low-

Confident-HL is statistically insignificant. Because the Low-Confident-HL portfolio returns are

excessively imprecise (volatile), zero-mean comparison tests with them perhaps have less “power”

to reject the null. However, Sharpe ratio tests vividly indicate the underwhelming performance of

the Low-Confident-HL portfolios.

To summarize, the statistical tests distinctly reject the conventional HL portfolios in favor of

the Confident-HL portfolios. As mentioned in section IV, the bootstrap tests use a block-size of

24. However, the conclusions are the same for block-lengths of 6, 12, 18, and 36.

D.2. Robustness of Confident-HL Portfolios on Non-Microcaps

In a recent working paper, Avramov et al. (2020) document that NN-3-based HL strategies

primarily extract economic gains from microcap stocks. Thus, to investigate the extent to which

these stocks drive the Confident-HL portfolio results, I retrain NN-3 on non-microcaps by excluding

microcaps.

Table VI presents the portfolios’ OOS performance. Table VII shows their statistical signifi-

cance. Even on the non-microcap subsample, the EW Confident-HL portfolio significantly outper-

forms comparable alternative HL strategies. For example, the VW-Confident-HL and its matching

VW-HLCM have the same average predicted-returns. However, the difference between the former

and latter portfolio’s average monthly return is a large 0.48% (5.76% at the annual level), which is

statistically significant at 5%. Likewise, the former portfolio yields a 15% higher annualized Sharpe

ratio (1.00) compared with the latter (0.87), statistically distinct at the 1% level.

D.3. Robustness to Higher-Moment Risks and Transaction-Costs

Higher-Moment Risks. Because NN-3-based HL portfolios are known to display positive

skewness and excess kurtosis (Avramov et al. (2020)), I also examine several higher-moment-

adjusted performance measures that reflect the portfolios’ downside risk. I consider Omega, Sortio,

and upside-potential ratio measures that asymmetrically penalize portfolio losses more than re-

warding gains, typically examined by practitioner-researchers as alternatives for Sharpe ratios.25

Table VIII presents the results. The Confident-HL and PW-HL handily outperform the con-

ventional HL and equivalent matching portfolios across the higher-order measures. Thus, dropping

or downweighing stocks with lower ex-ante precision from an investment portfolio also mitigates its

25See the following Wikipedia pages for the definitions of these measures: Omega, Sortino, and up-side potential.
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downside risk.

Transaction-Costs. To evaluate whether the economic gains from the Confident-HL portfo-

lios come at the expense of high transaction-costs, I calculate their portfolio turnovers. I find that

the Confident HL-portfolios deliver impressive transaction-adjusted returns as well. The “Turnover”

column of table VIII shows the portfolio turnovers, representing their average monthly percentage

change in holdings. The higher the turnover, the larger the transaction costs. In fact, Avramov

et al. (2020) extrapolate that a deduction of (0.005× turnover) from a portfolio’s realized return

roughly approximates the portfolio’s transaction-cost adjusted returns.

The Confident-HL portfolio turnovers, thereby transaction costs, are significantly higher rela-

tive to the conventional HL portfolios. This result is expected, as they predominantly take long-

short positions on a much smaller subset of stocks, thereby requiring more rebalancing. However,

the Confident-HL portfolios’ trading-cost adjusted returns are substantially larger than the con-

ventional HL and corresponding matching portfolios. For example, the adjusted returns of the

EW(VW)-Confident-HL are 2.68% (1.89%), whereas those of the EW(VW)-HL are much lower,

1.26% (0.79%), respectively.

In summary, I demonstrate that the NN-3-based Confident-HL portfolios statistically outper-

form the traditional HL counterparts across various economic measures. Plus, these results are

robust on non-microcaps and to transaction-costs and higher-moment risks. Now, I compare these

portfolios with the benchmark Lewellen-based HL portfolios.

E. Reassessing NN-3 and Lewellen Model Comparisons Using Bootstrap Tests

Recall from section IV that the OOS model comparisons conducted by the existing studies

(GKX) using the DM tests are misleading, as they do not account for estimation uncertainty. This

section reevaluates the predictive performance of NN-3 relative to the benchmark Lewellen model

using the bootstrap tests. I assess the models’ performance in terms of their OOS MSEs and the

HL portfolios’ average returns and Sharpe ratios.

E.1. NN-3 versus Lewellen: Out-of-Sample Mean Squared Error Comparisons

First, I test the null hypothesis that the MSEs of the NN-3 and Lewellen models are equal.

Figure 9 presents the p-values computed using the bootstrap tests and the DM tests on various

subsamples. In particular, every month, I sort stocks into deciles according to their NN-3-based

risk premium predictions’ ex-ante confidence, NN-3-EC. The blue line (yellow dotted-line) displays

the bootstrap (DM) p-values on the subsamples that dropout 10%, 20%, . . . , and 90% of the

stocks with the lowest NN-3-EC, respectively. These subsamples contain the forecasts that NN-

3 confidently predicts. In contrast, the red line (purple dotted-line) represents the p-values on
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subsamples comprising the forecasts that NN-3 imprecisely predicts.

Figure 9 reveals that the DM-based p-value is less than 0.01 on the entire OOS data comprising

all stocks. Thus, consistent with GKX, the DM test rejects the Lewellen model in favor of NN-3

at the 1% level. However, with a p-value of 3.03%, the bootstrap test does not reject the null at

1% significance. Although the null of equal predictive abilitiy is rejected at the 5% significance in

favor of NN-3, the difference between both p-values suggest that the DM-based tests over reject

the null.

Interestingly, figure 9 illustrates that the predictive dominance of NN-3 monotonically increases

with the level of ex-ante confidence. For example, dropping out 10%, 50%, and 90% of stocks with

the lowest NN-3-EC significantly decreases the p-value to 2.86%, 2.24%, and 1.01%, respectively.

Thus, the likelihood in favour of NN-3 increases considerably on the subsamples containing forecasts

confidently predicted by NN-3. In contrast, excluding 10%, 50%, and 90% of the stocks with the

highest NN-3-EC substantially increases the p-values to 4.11%, 5.72%, and 7.91%.

Of course, p-value comparisons may not provide adequate information about the models’ per-

formance on different subsamples. For example, consider the effect of changing the sample size,

holding the model MSEs constant. The smaller samples would yield larger standard errors and

larger p-values, although the true MSEs remain the same. Thus, to draw more informative in-

ferences, the following subsection compares the two models in terms of their HL portfolios’ OOS

returns and Sharpe ratios

E.2. NN-3 versus Lewellen: High-Low Portfolio Comparisons

Fig 10 plots the OOS return and Sharpe ratio differences between both models’ VW HL

portfolios on various subsamples. Like in the previous figure, the economic gains from the NN-3

monotonically increase with the NN-3-EC. For example, on the entire sample containing all stocks,

the difference between NN-3 and Lewellen HL portfolios’ average returns (squared Sharpe ratios)

is 0.38% (0.02), and statistically insignificant (at 10%). However, the difference soars to a highly

significant 0.82% (0.52) on the subsample comprising the top 10% stocks with the highest NN-3-

EC. In contrast, for the bottom 10% of stocks with the lowest NN-3-EC, Lewellen statistically

outperforms NN-3. The average return (square-Sharpe ratio) difference between NN-3 and Lewellen

HL portfolios is significantly negative -1.2% (-0.58).

Finally, I compare the conventional and Confident-HL portfolios formed from the NN-3 and

Lewellen models. The portfolio definitions and notations remain the same as in section V.C. In

addition, I denote all Lewellen-based HL portfolios by attaching the subscript “L” to HL. For

example, the conventional EW-HL portfolio based on the Lewellen model is represented by EW-

HLL.

Table IX presents the results. It reveals that the difference between the conventional EW
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(VW) NN-3-HL and Lewellen-HL portfolios’ squared-Sharpe ratios is statistically insignificant at

1% (10%). Moreover, the analogous difference between the NN-3-Low-Confident-HL and Lewellen-

HL is significantly negative, suggesting the Lewellen model’s dominance on the subsample of fore-

casts imprecisely predicted by NN-3. In contrast, the corresponding difference between the NN-3-

Confident-HL and Lewellen-HL portfolios is highly positive and significant at 1%. These results

confirm the superiority of NN-3-based Confident-HL portfolios.

To make a fair assessment, I also compare the NN-3-Confident-HL portfolios with Lewellen-

Confident-HL portfolios. The conclusions are the same. The NN-3-Confident-HL portfolios re-

markably outperform in terms of squared-Sharpe ratios. This result is expected, as Confident-HL

portfolios’ performance hinges on ex-ante precision predicting ex-post squared forecast errors. Be-

cause it is less likely to hold for the benchmark Lewellen model (as shown in II and V.B), the

Lewellen-Confident-HL portfolios do not deliver superior performance.

In sum, this section shows that existing studies significantly overestimate the overall predictive

performance of NN-3 relative to the Lewellen model. The difference between the performance of

both models’ conventional HL portfolios’ is moderately significant or insignificant. However, NN-3

exceptionally outperforms on subsamples of forecasts that it confidently predicts. Likewise, the NN-

3-based Confident-HL portfolios statistically dominate the comparable Lewellen model’s portfolios.

In the following two sections, I explore the time-series and cross-sectional properties of NN-3-

based ex-ante precision.

F. Time-Series Variation in Ex-ante Standard Errors

To understand the time-series variation in the estimation uncertainty of NN-3-based risk pre-

mia, I compute the cross-sectional average of their ex-ante standard errors and call these “aggre-

gate standard errors”. Figure 11 plots the time-series of the aggregate standard errors. The series

clearly reflects time-varying financial market uncertainty. For example, Bloom (2009) and Baker

et al. (2016) document that market uncertainty appears to jump up after major shocks, such as

Black Monday, the Dotcom Bubble, the Russian default, the failure of Lehman Brothers, and the

2011 debt ceiling dispute. Consistent with these studies, the aggregate standard errors spike after

such shocks.

Table X presents the time-series average of aggregate standard errors over the OOS period and

periods of shocks. Whereas the average monthly standard error across all periods is 1.06%, it is

2.31% during crisis periods. Because many individual predictors (e.g., size, price trends, and stock

market volatility) in the NN-3 model substantially deviate from their usual distributions during

these crisis periods, resulting risk premium predictions would also be hugely imprecise. Thus, the

aggregate standard errors proxy for market uncertainty. For example, the standard errors are 38%

correlated with the widely-used uncertainty proxy, the monthly market return standard deviation
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computed using daily data.

G. Cross-sectional Variation in Ex-ante Confidence

Table XI presents the cross-sectional properties of various ex-ante confidence sorted deciles. It

reveals that NN-3 confidently predicts stocks with small market capital, high book-to-market ratios

and high 1-year momentum returns. Because these characteristics associate with higher expected

returns, NN-3-based HL portfolios deliver more gains in the long-leg rather than the short-leg.

This result contrasts with the “arbitrage asymmetry” studies that argue, under trading frictions,

anomaly-based investment portfolios yield relatively more profits in the short-leg (e.g., Stambaugh

et al. (2012)). Avramov et al. (2020) note similar observations, albeit examining ex-post OOS long-

leg and short-leg returns of investment portfolios based on various ML models, including NN-3.

Possible reasons for understanding the association between the level and precision of NN-based risk

premium predictions warrant a future study.

Moreover, NN-3 confidently predicting risk premia of small-sized stocks lends support to

Avramov et al. (2020), who argue that NN-3-based HL portfolios derive more economic gains from

microcaps. Table XI shows why. Because such stock risk premia are more confidently predicted,

HL portfolios containing microcaps yield relatively larger economic gains.

Interestingly, I find that a significant proportion of non-microcaps have confidently risk pre-

mium predictions. Table XII presents the results. It shows that 34% of the stocks with the most

precise risk premium predictions have market caps greater than the median size across all individ-

ual stocks. Thus, NN-3-based Confident-HL portfolios yield impressive gains even on sub-samples

containing small-sized stocks.
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VI. Conclusions

I develop an easy-to-implement method to estimate ex-ante standard errors of risk premium

predictions from neural networks. To my knowledge, this is the first paper to explicitly derive

the precision of NN-based risk premia at the stock-level and portfolio-level. I show that consider-

ing ex-ante standard errors leads to enhanced investment portfolios and out-of-sample statistical

inferences.

The neural-network-based confident high low trading strategies that take long-short positions

on stocks that have more risk premium estimates yield at least 40% higher returns and 15%

higher Sharpe ratios than the neural-network-based conventional high-low portfolios. In evalu-

ating whether these improvements are statistically significant, this paper shows that existing out-

of-sample inferences that do not account for ex-ante standard errors are inadequate. I develop a

bootstrap method, robust to estimation uncertainty, to compare OOS returns and Sharpe ratios of

any two model-based investment strategies. The method also can be employed to compare mean

squared errors of any two competing return predictions.

The bootstrap tests suggest that the neural-network-based confident high-low portfolios sig-

nificantly outperform the neural-network-based conventional high-low portfolios, as well as the tra-

ditional high-low and confident high-low portfolios formed using the benchmark Lewellen model.

However, the difference between the conventional neural-network-based and Lewellen-based high-

low portfolios’ out-of-sample returns and Sharpe ratios are either statistically insignificant or mod-

erately significant. Thus, considering ex-ante standard errors is necessary for both real-time trading

strategies and ex-post out-of-sample inferences.
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A. Appendix: Proofs

1. Proof of Proposition-1:

Let the risk premium predictions of A1, A2, A3, and A4 be â1, â1, b̂1, and b̂2, respectively. Let

psea1, psea2, pseb1, and pseb2 be the predictive standard errors of A1, A2, A3, and A4, respectively.

The expected HL return equals the sum of the following measures

E(HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+ (µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ 0× p3, (52)

where p3 = 1− P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
− P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
.

Case1: When psea1 ≥ {pseb1, pseb2} and psea2 ≥ {pseb1, pseb2}, the expected Confident-HL

return equals

E(Confident-HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+ (µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ 0× p3

= E(HL). (53)

Case2: Similarly, when pseb1 ≥ {psea1, psea2} and pseb2 ≥ {psea1, psea2}

E(Confident-HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+ (µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ 0× p3

= E(HL). (54)

Case3: When predictive standard errors do not align with either case1 or case2, without loss

of generality, let psea1 ≤ pseb1 ≤ psea2 ≤ pseb2. Then,

E(Confident-HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+(µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ (µa − µb)× p4 + (µb − µa)× p5,

(55)
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where p4 = P
(
{â1, b̂2} ∈ QL

)
, p5 = P

(
{â2, b̂1} ∈ QL

)
, and P (.) is the probability measure.

Because â1 and b̂1 are (relatively) precisely measured, â1 and b̂2 are more likely to be in QL and

QS , respectively. Consistent with this intuition, it turns out that p4 > p5. Thus,

E(Confident-HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+(µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ (µa − µb)× (p4 − p5)

> E(HL) (56)

Similarly, the expected return of PW-HL is given by

E(PW-HL) =(µa − µb)× P
([
â1 > {b̂1, b̂2}, â2 > {b̂1, b̂2}

])
+(µb − µa)× P

([
b̂1 > {â1, â2}, b̂2 > {â1, â2}

])
+ (2w − 1)× (µa − µb)× (p4 − p5),

(57)

where w (> 0.5) is the weight assigned to the precise stock in each quantile. When w = 1, PW-HL

reduces to Confident-HL, as it takes long (short) position only on the stock with the precise risk

premium prediction. Thus,

E(HL) ≤ E(PW-HL) ≤ E(Confident-HL) (58)

2. Proof of Proposition-2

Proof. Using Gal and Ghahramani (2016), the following expressions are directly obtained for the

(approximated) Bayesian marginal predictive distribution of returns and their variances, respec-

tively.

Q(r∗i,t+1|z∗it, R, Z) = P (ri,t+1|z∗it, R, Z,Ω)q(Ω)

q(Ω) =

K∏
k=1

pi,k, where each pi,k ∼ Bern(p),

P (ri,t+1|z∗it, R, Z,Ω) = N (Êi,Ω,t, σ
2
ηI), (59)

where Bern() represents Bernoulli distribution. Êi,Ω,t is given by (25), with d replaced by Ω. And

V ar
[
Q(r∗i,t+1|z∗it, R, Z)

]
≈ 1

D

D∑
d=1

(
Êi,d,t −

1

D

D∑
d=1

Êi,d,t

)2

+ σ2
η (60)
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Denote V ar
[
Q(r∗i,t+1|z∗it, R, Z)

]
by VQ(r∗i,t+1), where VQ represents the variance operation

under the probability distribution Q(r∗i,t+1|z∗it, R, Z). Note that by the law of total variance

VQ(r∗i,t+1) = VQ(E(r∗i,t+1|W1,W2)) + EQ(V (r∗i,t+1|W1,W2)), (61)

where W1,W2 are the unknown weight matrices of the NN-1, and EQ represents the expectation

operation under the probability distribution Q(r∗i,t+1|z∗it, R, Z).

(61) further implies that

VQ(r∗i,t+1) = VQ(µ∗i,t) + σ2
η, (62)

because E(r∗i,t+1|W1,W2) = µ∗i,t, and V (r∗i,t+1|W1,W2) = σ2
η, which is assumed to be known.

Thus, (60) and (61) implies

VQ(µ∗i,t) =
1

D

D∑
d=1

(
Êi,d,t −

1

D

D∑
d=1

Êi,d,t

)2

. (63)

3. Proof of Proposition-3

Proof. To compute portfolio-level standard errors, joint (approximated) density of return predic-

tions are required. Straightforward algebra implies that it is given by

Q(r∗1,t+1, r
∗
2,t+1, . . . r

∗
S,t+1|{z∗it}Si=1, R, Z) = P (r∗1,t+1, r

∗
2,t+1, . . . r

∗
S,t+1|{z∗it}Si=1, R, Z,Ω)q(Ω)

q(Ω) =
K∏
k=1

pi,k, where each pi,k ∼ Bern(p),

P (r∗1,t+1, r
∗
2,t+1, . . . r

∗
S,t+1|{z∗it}Si=1, R, Z,Ω) = N (ÊS,Ω,t, σ

2
ηI), where ÊS,Ω,t =


Ê1,Ω,t

Ê2,Ω,t

...

ÊS,Ω,t

 , (64)

with each Êi,Ω,t given by (25). The key is to use the same Ω across the stocks, as discussed in the

main section of the paper. Then, the predictive variance of the portfolio P is given by

VQ(r∗P,t+1) = EQ
(
V (r∗P,t+1|Ω)

)
+ VQ

(
E(r∗P,t+1|Ω)

)
, (65)
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where r∗P,t+1 =
∑

i∈S ωP,i,tr
∗
i,t+1. Moreover, V (r∗P,t+1|Ω) =

∑
i∈S ω

2
P,i,tσ

2
η. And due to (64),

VQ

(
E(r∗P,t+1|Ω)

)
can be approximated by

VQ
(
E(r∗P,t+1|Ω)

)
≈ 1

D

D∑
d=1

(
ÊP,d,t −

1

D

D∑
d=1

ÊP,d,t

)2

, (66)

with ÊP,d,t, and p1,d, p2,d given in (27).

Thus, (65) further implies that

VQ(r∗P,t+1) =
∑
i∈S

ω2
P,i,tσ

2
η +

1

D

D∑
d=1

(
ÊP,d,t −

1

D

D∑
d=1

ÊP,d,t

)2

. (67)

Now, to compute the predictive variance of P ’s risk premium, note that

VQ(r∗P,t+1) = EQ
(
V (r∗P,t+1|W1,W2)

)
+ VQ

(
E(r∗P,t+1|W1,W2)

)
=
∑
i∈S

ω2
P,i,tσ

2
η + VQ(µ∗P,t). (68)

Thus, from (67) and (68),

VQ(µ∗P,t) =
1

D

D∑
d=1

(
ÊP,d,t −

1

D

D∑
d=1

ÊP,d,t

)2

(69)
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B. Appendix: Simulations and Testing the Diebold and Mariano

(2002) Assumption

1. Validity of Standard Errors: Monte Carlo Evidence

Table I
Calibration of the Confidence Intervals: Monte Carlo Evidence
This table validates the proposed standard errors using Monte Carlo simulations. The data comprise monthly stock

risk premia and their raw predictors simulated under four different models 1-4. On the simulated data, confidence

intervals (CIs) of various levels are constructed using NN-based risk premium predictions and their standard errors.

Each row presents the confidence level and probabilities with which the corresponding level’s confidence intervals

cover the true simulated risk premia under the four models.

Probability that CI contains true risk premium

Confidence level Model 1 Model 2 Model 3 Model 4

1% 1.26% 1.49% 1.08% 0.91%

5% 6.23% 6.65% 4.64% 3.63%

10% 11.81% 13.16% 8.98% 7.57%

20% 23.83% 26.26% 17.78% 16.17%

50% 48.72% 61.62% 46.85% 43.64%

60% 57.73% 73.10% 59.38% 55.52%

80% 78.94% 90.73% 83.60% 79.66%

90% 90.24% 96.48% 93.72% 90.36%

95% 96.03% 98.56% 97.39% 95.20%

99% 99.33% 99.74% 99.36% 98.75%
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2. Tests of Covariance Stationarity

Table II
Violation of Diebold and Mariano (2002) conditions : Non-Stationarities due to Estimation
Uncertainty
This table shows that the model-based loss differentials violate the covariance stationarity assumption required for

the Diebold and Mariano (2002) tests’ asymptotic validity. The table presents three loss differential series over the

360 out-of-sample periods. The first comprises the forecast-squared error differences between the NN-3 and Lewellen-

based return predictions. The second contains the return differences between the equal-weighted high-low portfolios

based on the NN-3 and Lewellen-based models. The third includes the return differences between the value-weighted

high-low portfolios based on the NN-3 and Lewellen-based models. The First 180 Months column presents the loss

differentials’ sample standard deviations over the first 180 OOS periods, whereas the Last 180 Months column shows

those over the last 180 periods. The Ratio column presents the ratio of the first and last 180 month standard

deviations. The p-value column presents the p-value under the hypothesis that the ratio equals one, with critical

values based on Pagan and Schwert (1990).

(NN-3 − Lewellen) Differentials Standard Deviation of Loss Function

Loss Function First 180 Months Last 180 Months Ratio p-value

Mean Squared Forecast Errors 0.12% 0.02% 5.03 < 0.001

Equal-weighted High-low Returns 0.35% 0.19% 1.85 < 0.001

Value-weighted High-low Returns 0.47% 0.27% 1.75 < 0.001
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3. Performance of this paper’s OOS Comparison Method: Monte Carlo Evidence

Figure 3. Test Sizes of OOS Comparison Methodologies

Note: This figure presents the “test sizes” of various methodologies at the 5% level. Test size

represents the probability of incorrectly rejecting the null when it is true. Return time series

with zero means are simulated under three distinct models, each imposing a different degree

of time-varying temporal dependency. On the simulated data, tests of zero return means are

conducted using three methods. The first (in blue) performs DM tests with the OLS standard

errors. The second (in red) executes DM tests with Newey-West standard errors. The third (in

orange) implements this paper’s bootstrap method.
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Figure 4. Power Curves of OOS Comparison Methodologies

Note: This figure presents the “power curves” of various methodologies at the 5% level. Power

represents the probability of correctly rejecting the null when it is not true. Return time series

are simulated under nine models, denoted by k, allowing for time-varying temporal dependencies.

The mean return under model k equals k×σ, where σ is a known scalar calibrated to match the

standard deviation of the market risk premium. On the simulated data, tests of zero return means

are conducted using three methods. The first (in blue) performs DM tests with the OLS standard

errors. The second (in red) executes DM tests with Newey-West standard errors. The third (in

orange) implements this paper’s bootstrap method.
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Figure 5. Out-of-Sample (OOS) Performance of Equal-weighted Deciles Based on NN-3 Predictions.

Figure 6. Out-of-Sample (OOS) Performance of Value-weighted Deciles Based on NN-3 Predictions.

Note: Figure 5 (6) presents the performance of equal-weighted (value-weighted) prediction-

sorted portfolios over the 30-year out-of-sample. At each period, stocks are sorted into deciles

according to their NN-3-based risk premium predictions. Decile-10 (decile-1) comprises the top

(bottom) 10% stocks with the lowest (highest) return predictions. The top figure shows the average

monthly returns of each decile, whereas the bottom represents their annualized Sharpe ratios.
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Figure 7. Ex-ante Confidence and Ex-post OOS-R2: NN-3-based Predictions and Standard Errors

Note: This figure presents the out-of-sample (OOS) R2s of various ex-ante confidence-sorted sub-

samples over the 30-year test sample. At each period, stocks are sorted into deciles according to

their NN-3-based risk premium predictions’ ex-ante confidence (EC). Decile-10 (decile-1) com-

prises the top (bottom) 10% stocks with the lowest (highest) precision. The y-axis represents the

ex-post OOS R2s attained by the decile subsamples.
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Figure 8. Ex-ante Confidence and Ex-post OOS-R2: Lewellen-based Predictions and Standard Errors

Note: This figure presents the out-of-sample (OOS) R2s of various ex-ante confidence-sorted sub-

samples over the 30-year test sample. At each period, stocks are sorted into deciles according to

their Lewellen-based risk premium predictions’ ex-ante confidence. Decile-10 (decile-1) comprises

the top (bottom) 10% of stocks with the lowest (highest) precision. The y-axis represents the

ex-post OOS R2s attained by the decile subsamples.
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Table III
Long-short Portfolios’ Performance on Subsamples with Different Levels of Ex-ante Confidence
This table reports the performance of model-based high-low (HL) portfolios over the 30-year out-of-sample (OOS)

period on various subsamples. Each period, stocks are first sorted into deciles according to their ex-ante confidence

levels of model-based risk premium predictions. On each decile, equal-weighted (value-weighted) HL portfolios are

formed by further sorting stocks into deciles according to their next month’s model-based return predictions and

taking long-short positions on the extreme deciles. The NN-3-HL and Lewellen-HL columns present each precision-

decile’s HL portfolio’s performance under the NN-3 and Lewellen models, respectively. The Pred Ret column reports

the HL portfolio’s average return predictions. The Avg Ret, Std, Sharpe columns respectively represent the average,

standard deviation, and Sharpe ratio of the HL portfolio’s realized returns. Panels A and B present the equal-weighted

and value-weighted strategies, respectively.

Panel A: Performance of equal-weighted-HL on various precision-sorted subsamples

NN-3-HL Lewellen-HL

Precision decile Pred Ret Avg Ret Std Sharpe Pred Ret Avg Ret Std Sharpe

1 (Low-Confident) 0.72% 0.88% 4.29% 0.71 1.83% 0.81% 6.85% 0.41

2 0.52% 1.14% 4.80% 0.83 2.97% 1.89% 6.53% 1.00

3 0.54% 0.75% 4.62% 0.56 2.30% 1.53% 6.88% 0.77

4 0.58% 1.31% 4.74% 0.96 1.83% 1.80% 7.60% 0.82

5 0.62% 1.31% 5.15% 0.88 1.62% 1.70% 7.02% 0.84

6 0.64% 1.77% 5.42% 1.13 1.49% 1.44% 5.99% 0.83

7 0.66% 1.40% 5.44% 0.89 1.49% 1.93% 6.12% 1.09

8 0.68% 1.78% 5.59% 1.10 1.50% 1.53% 5.27% 1.01

9 0.71% 2.03% 7.43% 0.95 1.43% 2.01% 4.99% 1.40

10 (High-Confident) 0.88% 3.10% 7.48% 1.44 1.07% 1.42% 4.90% 1.00

Panel B: Performance of value-weighted-HL on various precision-sorted subsamples

NN-3-HL Lewellen-HL

Precision decile Pred Ret Avg Ret Std Sharpe Pred Ret Avg Ret Std Sharpe

1 (Low-Confident) 0.70% 0.34% 5.12% 0.23 1.79% 1.00% 5.46% 0.64

2 0.49% 0.65% 5.82% 0.39 2.89% 1.27% 8.64% 0.51

3 0.52% 0.86% 5.60% 0.53 2.16% 1.57% 7.39% 0.74

4 0.56% 0.65% 5.21% 0.43 1.76% 1.07% 6.39% 0.58

5 0.60% 0.80% 5.55% 0.50 1.45% 1.06% 6.30% 0.58

6 0.62% 0.68% 5.59% 0.42 1.32% 1.01% 5.43% 0.64

7 0.62% 0.43% 6.02% 0.25 1.29% 1.27% 5.40% 0.82

8 0.67% 0.67% 6.52% 0.36 1.35% 1.13% 5.11% 0.77

9 0.70% 1.16% 7.68% 0.52 1.33% 1.33% 5.98% 0.77

10 (High-Confident) 0.89% 1.59% 6.86% 0.80 0.99% 0.66% 5.93% 0.39
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Table IV
Performance of Confident and Low-Confident Long-Short Portfolios: All Stocks
This table reports the performance of various NN-3-based long-short portfolios over the 30-year out-of-sample (OOS)

period. EW(VW)-HL represents the traditional equal(value)-weighted long-short portfolio. EW(VW)-Confident-HL

and EW(VW)-Low-Confident-HL denote the equal(value)-weighted Confident and Low-Confident long-short portfo-

lios that only include stocks with the most confident and imprecise risk premium predictions, respectively. LPW-HL

and PW-HL are the “imprecision” and “precision” weighted portfolios that overweight stocks with imprecise and

precise return predictions, respectively. EW(VW, LPW)-HLLCM is the conventional EW(VW, LPW) HL portfolio

matched to have the same average predicted returns as that of the EW-Low-Confident-HL (EW-Low-Confident-HL,

LPW-HL) portfolio. EW(VW)-HLCM is a traditional EW(VW)-HL portfolio matched to have the same average

predicted returns as that of the EW-Confident-HL (VW-Confident-HL) portfolio. Likewise, LPW(PW)-HLM is

a traditional EW-HL portfolio matched with LPW(PW)-HL. See section V.C for a detailed description of the

portfolios. All portfolio returns are also adjusted for Fama-French 5-factors plus momentum (FF-5+UMD) and

Stambaugh-Yuan 4-factor (SY) models. The “pred ret” column represents the average predicted returns. The “avg

ret” column shows the average realized returns. The “α” columns indicate abnormal returns. The “t” columns

denote the t-stats of “average returns” and “α”. The “SR” and “IR” columns represent the annualized Sharpe and

Information ratios, respectively.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low; HLLCM, HLCM and HLM are matching high-low portfolios.

Panel A: Equal-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

EW-HL 1.69% 2.52% 8.21 1.50 2.20% 7.63 1.39 2.18% 7.15 1.31

EW-HLLCM 1.77% 2.64% 8.20 1.50 2.34% 7.7 1.41 2.33% 7.25 1.32

EW-Low-Confident-HL 1.79% 2.35% 6.46 1.18 1.97% 5.65 1.03 1.96% 5.28 0.96

EW-HLCM 1.97% 3.07% 8.65 1.58 2.77% 8.26 1.51 2.75% 7.8 1.42

EW-Confident-HL 1.97% 3.61% 9.58 1.75 3.29% 9.02 1.65 3.27% 8.6 1.57

Panel B: Value-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

VW-HL 1.62% 1.48% 4.95 0.90 0.90% 3.26 0.59 0.77% 2.68 0.49

VW-HLLCM 1.77% 1.50% 4.61 0.84 0.87% 2.87 0.52 0.76% 2.38 0.44

VW-Low-Confident-HL 1.78% 1.31% 3.02 0.55 0.48% 1.15 0.21 0.39% 0.88 0.16

VW-HLCM 1.90% 1.73% 4.92 0.90 1.12% 3.39 0.62 1.02% 2.95 0.54

VW-Confident-HL 1.90% 2.21% 5.95 1.09 1.79% 4.77 0.87 1.43% 3.82 0.70

Panel C: Precision-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

EW-HL 1.69% 2.52% 8.21 1.50 2.20% 7.63 1.39 2.18% 7.15 1.31

LPW-HLM 1.69% 2.52% 8.21 1.50 2.20% 7.63 1.39 2.18% 7.15 1.31

LPW-HL 1.70% 2.36% 7.63 1.39 2.02% 6.95 1.27 2.00% 6.48 1.18

PW-HLM 1.77% 2.64% 8.20 1.50 2.34% 7.7 1.41 2.33% 7.25 1.32

PW-HL 1.77% 2.87% 9.14 1.67 2.57% 8.68 1.59 2.55% 8.16 1.49



Table V
Statistical Comparison of Long-Short Portfolios: All Stocks
This table conducts pairwise statistical comparisons of the out-of-sample (OOS) performance of various NN-3-based

long-short portfolios. The tests are based on the moving block bootstrap procedure developed in section IV,

with a block-length of 24. The Investment Strategy column shows the comparing pair of portfolios. The avg ret

column presents the average return differences between the pair of investment strategies. The α column shows

the average abnormal return differences. The Sharpe2 and IR2 columns show the annualized squared-Sharpe and

squared-information ratio differences between the investment portfolios, respectively. The numbers in parenthesis

are p-values. *, ** and *** denote significance at the 1%, 5% and 10% levels, respectively. See table IV and section

V.C for a description of the portfolios.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low; HLLCM, HLCM and HLM are matching high-low portfolios.

Panel A : OOS Performance Differences of Equal-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − EW-Low-Confident-HL 0.17%
(0.373)

0.859∗∗∗
(0)

0.23%
(0.207)

1.008∗∗∗
(0)

0.22%
(0.267)

0.941∗∗∗
(0)

EW-HLLCM − EW-Low-Confident-HL 0.30%
(0.142)

0.853∗∗∗
(0)

0.36%∗
(0.06)

1.049∗∗∗
(0)

0.36%∗
(0.083)

0.998∗∗∗
(0)

EW-Confident-HL − EW-HL 1.10%∗∗∗
(0)

0.808∗∗∗
(0)

1.09%∗∗∗
(0)

0.884∗∗∗
(0)

1.09%∗∗∗
(0)

0.92∗∗∗
(0)

EW-Confident-HL − EW-Low-Confident-HL 1.27%∗∗∗
(0.001)

1.666∗∗∗
(0)

1.32%∗∗∗
(0)

1.892∗∗∗
(0)

1.31%∗∗∗
(0.001)

1.861∗∗∗
(0)

EW-Confident-HL − EW-HLCM 0.55%∗∗
(0.03)

0.563∗∗∗
(0)

0.52%∗∗
(0.039)

0.502∗∗∗
(0)

0.52%∗∗
(0.043)

0.527∗∗∗
(0)

Panel B : OOS Performance Differences of Value-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

VW-HL − VW-Low-Confident-HL 0.17%
(0.542)

0.511∗∗∗
(0.001)

0.42%∗
(0.094)

0.356∗∗∗
(0.001)

0.38%
(0.136)

0.258∗∗∗
(0.002)

VW-HLLCM − VW-Low-Confident-HL 0.19%
(0.503)

0.404∗∗∗
(0.002)

0.39%
(0.144)

0.266∗∗∗
(0.003)

0.37%
(0.173)

0.198∗∗∗
(0.008)

VW-Confident-HL − VW-HL 0.73%∗∗∗
(0.003)

0.364∗∗∗
(0.003)

0.89%∗∗∗
(0)

0.467∗∗∗
(0)

0.66%∗∗∗
(0.007)

0.3∗∗∗
(0.001)

VW-Confident-HL − VW-Low-Confident-HL 0.90%∗∗
(0.032)

0.875∗∗∗
(0)

1.31%∗∗∗
(0)

0.823∗∗∗
(0)

1.04%∗∗∗
(0.009)

0.558∗∗∗
(0)

VW-Confident-HL − VW-HLCM 0.48%∗
(0.086)

0.374∗∗∗
(0.004)

0.67%∗∗∗
(0.003)

0.433∗∗∗
(0.001)

0.41%
(0.128)

0.238∗∗∗
(0.008)

Panel C : OOS Performance Differences of Precision-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − LPW-HL 0.15%∗∗
(0.031)

0.307∗∗∗
(0)

0.18%∗∗∗
(0.007)

0.38∗∗∗
(0)

0.38%
(0.136)

0.258∗∗∗
(0.002)

LPW-HLM − LPW-HL 0.15%∗∗
(0.031)

0.307∗∗∗
(0)

0.18%∗∗∗
(0.007)

0.38∗∗∗
(0)

0.37%
(0.173)

0.198∗∗∗
(0.008)

PW-HL − EW-HL 0.36%∗∗∗
(0)

0.535∗∗∗
(0)

0.37%∗∗∗
(0)

0.658∗∗∗
(0)

0.66%∗∗∗
(0.007)

0.3∗∗∗
(0.001)

PW-HL − LPW-HL 0.51%∗∗∗
(0.001)

0.842∗∗∗
(0)

0.55%∗∗∗
(0)

1.038∗∗∗
(0)

1.04%∗∗∗
(0.009)

0.558∗∗∗
(0)

PW-HL − PW-HLM 0.23%∗∗
(0.014)

0.541∗∗∗
(0)

0.23%∗∗∗
(0.007)

0.617∗∗∗
(0)

0.41%
(0.128)

0.238∗∗∗
(0.008)
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Table VI
Performance of Confident and Low-Confident Long-Short Portfolios: Non-Microcap Stocks
This table reports the performance of various NN-3-based long-short portfolios over the 30-year out-of-sample (OOS)

period. Every period, the sample excludes microcap stocks with market capital smaller than the 20th NYSE size

percentile. See table IV and section V.C for a description of the portfolios. All portfolio returns are also adjusted

for Fama-French 5-factors plus momentum (FF-5+UMD) and Stambaugh-Yuan 4-factor (SY) models. The pred

ret column represents the average predicted returns. The avg ret column shows the average realized returns. The

α columns indicate abnormal returns. The t columns denote the t-stats of average returns and α. The SR and IR

columns represent the annualized Sharpe and Information ratios, respectively.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low; HLLCM, HLCM and HLM are matching high-low portfolios.

Panel A: Equal-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

EW-HL 0.68% 1.66% 5.43 0.99 1.35% 4.58 0.84 1.24% 3.99 0.73

EW-HLLCM 0.74% 1.83% 5.57 1.02 1.51% 4.76 0.87 1.37% 4.13 0.75

EW-Low-Confident-HL 0.74% 1.50% 3.98 0.73 1.10% 2.96 0.54 0.89% 2.32 0.42

EW-HLCM 0.74% 1.83% 5.57 1.02 1.51% 4.76 0.87 1.37% 4.13 0.75

EW-Confident-HL 0.74% 2.25% 6.68 1.22 2.04% 6.03 1.10 1.93% 5.49 1.00

Panel B: Value-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

VW-HL 0.66% 1.42% 4.64 0.85 1.09% 3.58 0.65 0.98% 3.1 0.57

VW-HLLCM 0.73% 1.58% 4.76 0.87 1.25% 3.76 0.69 1.10% 3.2 0.59

VW-Low-Confident-HL 0.74% 1.25% 3.13 0.57 0.88% 2.26 0.41 0.74% 1.83 0.33

VW-HLCM 0.73% 1.58% 4.76 0.87 1.25% 3.76 0.69 1.10% 3.2 0.59

VW-Confident-HL 0.72% 2.07% 5.48 1.00 1.84% 4.78 0.87 1.64% 4.14 0.76

Panel C: Precision-Weighted Portfolios

Undjusted FF-5+Mom SY

Investment Strategy pred ret avg ret t SR α t IR α t IR

EW-HL 0.68% 1.66% 5.43 0.99 1.35% 4.58 0.84 1.24% 3.99 0.73

LPW-HLM 0.68% 1.66% 5.43 0.99 1.35% 4.58 0.84 1.24% 3.99 0.73

LPW-HL 0.69% 1.60% 4.99 0.91 1.26% 4.06 0.74 1.13% 3.47 0.63

PW-HLM 0.68% 1.66% 5.43 0.99 1.35% 4.58 0.84 1.24% 3.99 0.73

PW-HL 0.69% 1.80% 5.93 1.08 1.52% 5.17 0.94 1.41% 4.57 0.83
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Table VII
Statistical Comparison of Long-Short Portfolios: Non-Microcap Stocks
This table conducts pairwise statistical comparisons of the OOS performance of various NN-3-based long-short

portfolios. Every period, the sample excludes microcap stocks with market capital smaller than the 20th NYSE size

percentile. The tests are based on the moving block bootstrap procedure developed in section IV, with a block-length

of 24. The Investment Strategy column shows the comparing pair of portfolios. The avg ret column presents the

average return differences between the pair of investment strategies. The α column shows the average abnormal

return differences. The Sharpe2 and IR2 columns show the annualized squared-Sharpe and squared-information

ratio differences between the investment portfolios. The numbers in parenthesis are p-values. *, ** and *** denote

significance at the 1%, 5% and 10% levels, respectively. See table IV and section V.C for a description of the portfolios.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low; HLLCM, HLCM and HLM are matching high-low portfolios.

Panel A : Performance Differences of Equal-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − EW-Low-Confident-HL 0.16%
(0.393)

0.454∗∗∗
(0.000)

0.25%
(0.183)

0.469
(0.000)

0.35%∗
(0.064)

0.427∗∗∗
(0.000)

EW-HLLCM − EW-Low-Confident-HL 0.33%∗
(0.076)

0.505∗∗∗
(0.000)

0.41%∗∗
(0.023)

0.535∗∗∗
(0.000)

0.48%∗∗∗
(0.008)

0.471∗∗
(0.000)

EW-Confident-HL − EW-HL 0.59%∗∗∗
(0.000)

0.505∗∗∗
(0.000)

0.69%∗∗∗
(0.000)

0.588∗∗∗
(0.000)

0.69%∗∗∗
(0.000)

0.572∗∗∗
(0.000)

EW-Confident-HL − EW-Low-Confident-HL 0.75%∗∗
(0.016)

0.959∗∗∗
(0.000)

0.94%∗∗∗
(0.002)

1.058∗∗∗
(0.001)

1.03%∗∗∗
(0.001)

0.999∗∗∗
(0.000)

EW-Confident-HL − EW-HLCM 0.42%∗∗
(0.015)

0.454∗∗∗
(0.000)

0.53%∗∗∗
(0.001)

0.523∗∗∗
(0.000)

0.56%∗∗∗
(0.001)

0.528∗∗∗
(0.000)

Panel B : Performance Differences of Value-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

VW-HL − VW-Low-Confident-HL 0.17%
(0.509)

0.391∗∗∗
(0.000)

0.20%
(0.438)

0.296∗∗∗
(0.000)

0.24%
(0.341)

0.253∗∗∗
(0.001)

VW-HLLCM − VW-Low-Confident-HL 0.33%
(0.214)

0.428∗∗∗
(0.000)

0.37%∗∗
(0.166)

0.348∗∗∗
(0.000)

0.36%∗
(0.168)

0.280∗∗
(0.001)

VW-Confident-HL − VW-HL 0.65%∗∗∗
(0.005)

0.285∗∗∗
(0.000)

0.75%∗∗∗
(0.001)

0.382∗∗∗
(0.000)

0.66%∗∗∗
(0.005)

0.304∗∗∗
(0.000)

VW-Confident-HL − VW-Low-Confident-HL 0.82%∗∗
(0.029)

0.676∗∗∗
(0.000)

0.95%∗∗∗
(0.009)

0.679∗∗∗
(0.000)

0.90%∗∗
(0.012)

0.557∗
(0.000)

VW-Confident-HL − VW-HLCM 0.48%∗∗
(0.041)

0.248∗∗∗
(0.001)

0.59%∗∗
(0.011)

0.331∗∗∗
(0.000)

0.54%∗∗
(0.024)

0.277∗∗∗
(0.000)

Panel C : Performance Differences of Precision-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − LPW-HL 0.06%
(0.348)

0.152∗∗∗
(0.000)

0.09%
(0.146)

0.172∗∗∗
(0.000)

0.11%∗
(0.082)

0.157∗∗∗
(0.000)

LPW-HLM − LPW-HL 0.06%
(0.348)

0.152∗∗∗
(0.000)

0.09%
(0.146)

0.172∗∗∗
(0.000)

0.11%∗
(0.082)

0.157∗∗∗
(0.000)

PW-HL − EW-HL 0.14%∗∗
(0.014)

0.192∗∗∗
(0.000)

0.17%∗∗∗
(0.002)

0.222∗∗∗
(0.000)

0.17%∗∗∗
(0.001)

0.198∗∗∗
(0.000)

PW-HL − LPW-HL 0.20%∗
(0.088)

0.343∗∗∗
(0.000)

0.27%∗∗
(0.015)

0.394∗∗∗
(0.000)

0.28%∗∗
(0.011)

0.355∗∗∗
(0.000)

PW-HL − PW-HLM 0.14%∗∗
(0.014)

0.192∗∗∗
(0.000)

0.17%∗∗∗
(0.002)

0.222∗∗∗
(0.000)

0.17%∗∗∗
(0.001)

0.198∗∗∗
(0.000)
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Table VIII
Transaction Costs and Higher-Moment Adjusted Performance of Confident-HL Portfolios
This table reports the transaction costs and higher-moment-risk-adjusted performance of various NN-3-based long-

short portfolios over the 30-year out-of-sample period. The Turnover column presents a portfolio’s average monthly

percentage change in holdings (i.e., turnover). A deduction of (0.005×Turnover) from a portfolio’s realized return

roughly approximates its transaction-cost-adjusted returns. The Omega, Sortino and Upside columns respectively

represent the Omega, Sortino and Upside potential ratios. These ratios measure the higher-moment-risk-adjusted

performance of portfolios, explicitly penalizing losses more than realizing gains. See table IV and section V.C for a

description of the portfolios.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low; HLLCM, HLCM and HLM are matching high-low portfolios.

Equal-Weighted Portfolios: Higher-Moment Adjusted Performance

All Stocks Non-Microcaps

Investment Strategy Turnover Omega Sortino Upside Turnover Omega Sortino Upside

EW-HL 1.27 4.22 0.98 1.28 1.12 2.46 0.51 0.86

EW-HLLCM 1.37 4.18 0.96 1.27 1.23 2.49 0.54 0.89

EW-Low-Confident-HL 1.88 2.83 0.71 1.10 1.89 1.89 0.37 0.80

EW-HLCM 1.53 4.44 1.05 1.36 1.45 2.49 0.54 0.89

EW-Confident-HL 1.85 4.70 1.28 1.62 1.84 2.84 0.66 1.01

Value-Weighted Portfolios: Higher-Moment Adjusted Performance

All Stocks Non-Microcaps

Investment Strategy Turnover Omega Sortino Upside Turnover Omega Sortino Upside

VW-HL 1.37 2.24 0.53 0.96 1.2 2.12 0.43 0.82

VW-HLLCM 1.51 2.12 0.49 0.93 1.37 2.14 0.46 0.86

VW-Low-Confident-HL 1.90 1.58 0.26 0.71 1.86 1.59 0.26 0.71

VW-HLCM 1.62 2.23 0.54 0.98 1.5 2.14 0.46 0.86

VW-Confident-HL 1.89 2.43 0.63 1.07 1.88 2.43 0.56 0.96

Precision-Weighted Portfolios: Higher-Moment Adjusted Performance

All Stocks Non-Microcaps

Investment Strategy Turnover Omega Sortino Upside Turnover Omega Sortino Upside

PW-HL 1.27 4.22 0.98 1.28 1.12 2.46 0.51 0.86

PW-HLM 1.27 4.22 0.98 1.28 1.12 2.46 0.51 0.86

PW-Low-Confident-HL 1.54 3.74 0.91 1.24 1.43 2.26 0.47 0.85

PW-HLM 1.37 4.18 0.96 1.12 1.38 2.46 0.51 0.86

PW-Confident-HL 1.51 4.80 1.13 1.42 1.43 2.66 0.56 0.90
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Figure 9. Comparing predictive performance of NN-3 with the benchmark Lewellen (2015) model

Note: This figure presents the p-values under the null hypothesis that the mean squared error of the

NN-3 and Lewellen models are equal on various subsamples over the 30-year out-of-sample period.

Every month, stocks are sorted into deciles according to their NN-3-based risk premium predictions’

ex-ante confidence, NN-3-EC. The blue line (yellow dotted-line) displays the bootstrap (DM) p-

values on the subsamples that dropout 10%, 20%, . . . and 90% of the stocks with the lowest NN-

3-EC, respectively. Thus, these subsamples contain the forecasts that NN-3 confidently predicts.

In contrast, the red line (purple dotted-line) represents the p-values on the subsamples comprising

the forecasts that NN-3 imprecisely predicts, excluding the 10%, 20%, . . . and 90% stocks with the

highest NN-3-EC, respectively.
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Figure 10. Comparing predictive performance of NN-3 with the benchmark Lewellen (2015) model

Note: This figure presents the out-of-sample average return and squared-Sharpe-ratio differences

between the value-weighted high-low (HL) portfolios formed using the NN-3 and Lewellen models on

various subsamples. Every month, stocks are sorted into deciles according to their NN-3-based risk

premium predictions’ ex-ante confidence, NN-3-EC. The blue line in the top (bottom) of the figure

displays the HL portfolios’ average return (squared-Sharpe-ratio) differences on the subsamples

that dropout 10%, 20%, . . . , and 90% of the stocks with the lowest NN-3-EC, respectively. Thus,

these subsamples contain the forecasts that NN-3 confidently predicts. In contrast, the red line at

the top (bottom) of the figure corresponds to the subsamples comprising the forecasts that NN-3

imprecisely predicts, excluding the 10%, 20%, . . . and 90% highest NN-3-EC stocks, respectively.
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Table IX
Statistical Comparison of Long-Short Portfolios: NN-3 versus Lewellen (2015)
This table conducts pairwise statistical comparisons of the OOS performance of various long-short portfolios based

on the NN-3 and Lewellen models. The tests are based on the moving block bootstrap procedure developed in

section IV, with a block-length of 24. The Investment Strategy column shows the comparing pair of portfolios. The

avg ret column presents the average return differences between the pair of investment strategies, the α column shows

the average abnormal return differences. The Sharpe2 and IR2 columns show the annualized squared-Sharpe and

squared-information ratio differences between the investment portfolios. The “HL” and “HLL” portfolios are based

on the NN-3 and Lewellen models, respectively. The numbers in parenthesis are p-values. *, **, and *** denote

significance at the 1%, 5% and 10% levels, respectively. See table IV and section V.C for a description of the portfolios.

Notes: EW = equal-weighted; VW = value-weighted ; LPW = low-precision-weighted; PW = precision-weighted;

HL=high-low portfolio based on NN-3; HLL=high-low portfolio based on Lewellen

Panel A : Performance Differences of Equal-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − EW-HLL 0.72%∗∗
(0.016)

0.247∗∗
(0.036)

0.66%∗∗
(0.036)

0.255∗∗
(0.025)

0.70%∗∗
(0.033)

0.446∗∗∗
(0.002)

EW-Low-Confident-HL − EW-HLL 0.55%∗∗
(0.089)

−0.611∗∗∗
(0.002)

0.44%
(0.23)

−0.753
(0)

0.49%
(0.21)

−0.495∗∗∗
(0)

EW-Confident-HL − EW-HLL 1.82%∗∗∗
(0)

1.055∗∗∗
(0)

1.75%∗∗∗
(0)

3.071∗∗∗
(0)

1.80%∗∗∗
(0)

1.366∗∗∗
(0)

EW-Low-Confident-HL − EW-Low-Confident-HLL 1.94%∗∗∗
(0)

1.33∗∗∗
(0)

1.64%∗∗∗
(0)

1.225∗∗∗
(0)

1.61%∗∗∗
(0)

1.08∗∗∗
(0)

EW-Confident-HL − EW-Confident-HLL 0.99%∗
(0.059)

1.034∗∗∗
(0.001)

1.25%∗∗
(0.02)

2.511∗∗∗
(0)

1.42%∗∗∗
(0.009)

1.253∗∗∗
(0)

Panel B : Performance Differences of Value-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

VW-HL − VW-HLL 0.39%
(0.249)

0.002
(0.925)

0.33%
(0.256)

−0.004
(0.869)

0.27%
(0.36)

0.036
(0.423)

VW-Low-Confident-HL − VW-HLL 0.22%
(0.659)

−0.509∗∗∗
(0.004)

−0.09%
(0.847)

−0.36∗∗∗
(0.005)

−0.12%
(0.793)

−0.221∗∗
(0.023)

VW-Confident-HL − VW-HLL 1.12%∗∗∗
(0.003)

0.366∗∗
(0.013)

1.22%∗∗∗
(0.001)

0.873∗∗∗
(0)

0.93%∗∗
(0.015)

0.337∗∗∗
(0.004)

VW-Low-Confident-HL − VW-Low-Confident-HLL 0.98%
(0.109)

0.281∗∗
(0.036)

0.20%
(0.715)

0.051
(0.293)

0.12%
(0.818)

0.013
(0.672)

VW-Confident-HL − VW-Confident-HLL 0.44%
(0.344)

0.377∗∗
(0.014)

0.86%∗∗
(0.03)

0.855∗∗∗
(0)

0.81%∗
(0.072)

0.419∗∗∗
(0.001)

Panel C : Performance Differences of Precision-Weighted Portfolios

Raw Returns FF-5+UMD SY

Investment Strategy avg ret Sharpe2 α IR2 α IR2

EW-HL − EW-HLL 0.72%∗∗
(0.016)

0.247∗∗
(0.04)

0.66%∗∗
(0.033)

0.255∗∗
(0.023)

0.70%∗∗
(0.035)

0.446∗∗∗
(0.002)

LPW-HL − EW-HLL 0.57%∗∗
(0.049)

−0.06
(0.319)

0.49%
(0.127)

−0.125
(0.11)

0.52%
(0.127)

0.076
(0.225)

PW-HL − EW-HLL 1.08%∗∗∗
(0.002)

0.782∗∗∗
(0.002)

1.03%∗∗∗
(0.002)

2.796∗∗∗
(0)

1.07%∗∗∗
(0.002)

1.071∗∗∗
(0)

LPW-HL − LPW-HLL 1.06%∗∗∗
(0.001)

0.798∗∗∗
(0.001)

1.05%∗∗∗
(0.001)

1.787∗∗∗
(0)

1.05%∗∗∗
(0.003)

0.978∗∗∗
(0)

PW-HL − PW-HLL 0.60%∗
(0.099)

0.273∗∗
(0.046)

0.82%∗∗∗
(0.03)

1.977∗∗∗
(0)

0.90%∗∗∗
(0.023)

0.529∗∗∗
(0.002)

63



Figure 11. Time-Series Variation in Standard Errors of NN-based Risk Premia

Note: This figure plots the time-series of aggregate standard errors, which are the cross-sectional

averages of NN-3-based risk premium predictions’ ex-ante standard errors . The labels, such as

“Black Monday”, “Russian Default”, represent periods of major shocks.
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Table X
Aggregate Standard Errors of NN-3-based Risk Premia
This table reports time-series averages of aggregate standard errors over different periods. The aggregate standard

errors equal the cross-sectional averages of NN-based risk premium predictions’ standard errors.

Panel A: Overall Period

Event Standard Error Time Period

Overall Data 1.06% Jan 1987 to Dec 2016

Panel B: Periods of major Shocks

Event Standard Error Time Period

Black Monday 2.05% Oct 1987 to Nov 1987

Russian LTCM Defualt 3.08% Sep 1998 to Sep 1998

Dotcom Bubble 2.24% Apr 2000 to Apr 2000

Worldcom and Enron 2.33% Jul 2002 to Sep 2002

Gulf War 2.75% Mar 2003 to Mar 2003

Quant Crisis 1.97% Aug 2007 to Aug 2007

Lehman Bankruptcy 2.00% Oct 2008 to Oct 2008

The 2011 Debt-Ceiling 2.32% Aug 2011 to Aug 2011

Crisis Period Average 2.31%

Non-Crisis Period Average 1.02%

65



Table XI
Cross-sectional Characteristics of Confidence-sorted Deciles
This table reports average characteristics of various confidence-sorted deciles. Every month, stocks are sorted

into deciles according to their ex-ante confidence of NN-3-based risk premium predictions. Each row under All

Stocks Columns represents the equal-weighted average of various characteristics across all stocks in the corresponding

precision-sorted decile. The table also presents the characteristics of confidence-sorted portfolios from the long and

short legs, separately. Every period stocks are first sorted into deciles according to their NN-based risk premia, with

H and L representing the deciles containing the highest and lowest predicted returns. Both H and L are further parti-

tioned into deciles according to their ex-ante confidence. The Long-Leg columns represent the average characteristics

of confidence-sorted deciles of H, whereas Short-Leg columns show those of L.

Ex-ante Precision

Decile

All Stocks Long-Leg Short-Leg

Size BM mom12m Size BM mom12m Size BM mom12m

1 1811 1.62 0.01 816 3.45 0.23 1939 0.76 -0.11

2 1836 1.76 0.05 810 3.37 0.23 2003 0.88 -0.08

3 1838 1.97 0.07 793 3.33 0.24 2084 0.92 -0.06

4 1788 2.12 0.08 877 3.20 0.25 2043 0.99 -0.06

5 1750 2.29 0.10 846 3.58 0.26 2102 1.04 -0.06

6 1627 2.39 0.11 805 3.58 0.26 2049 1.03 -0.05

7 1521 2.54 0.12 829 3.50 0.29 2188 0.97 -0.05

8 1394 2.62 0.13 798 3.56 0.31 2206 0.99 -0.05

9 1233 2.72 0.16 706 3.74 0.34 2283 0.89 -0.05

10 988 3.16 0.22 628 4.53 0.42 2347 1.02 -0.07
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Table XII
Characteristics Distributions of Stocks in the Decile Containing the Most Confident Risk
Premium Predictions
This table reports various characteristic distributions of stocks in the top decile with the most confident risk premium
predictions. Every month, stocks are sorted into deciles according to their ex-ante confidence. The first row of the
Size column presents the proportion of stocks in the top-most confident decile that have market capital lower than
the 10th percentile of sizes across all stocks. Similarly, the second (third, . . . , tenth) row of the Size column shows
the proportion of stocks in the top-most confident decile that have market capital between the 10th and 20th (20th

and 30th, . . . , 90th and 100th) percentile of sizes across all stocks. The BM, mom12m, and illiq columns represent
equivalent proportions for book-to-market, 1-year momentum and illiquidity characteristics.

Decile Size BM mom12m illiq

1 (Low-Characteristic) 18.50% 10.02% 9.58% 7.23%

2 15.05% 8.21% 8.33% 6.94%

3 12.61% 8.34% 7.98% 7.03%

4 10.38% 11.39% 8.25% 7.53%

5 8.96% 14.09% 7.89% 8.14%

6 7.92% 11.61% 7.96% 9.21%

7 7.17% 7.64% 9.47% 10.61%

8 6.62% 10.55% 10.88% 12.36%

9 6.56% 13.43% 13.07% 14.54%

10 (High-Characteristic) 6.51% 15.10% 17.04% 16.50%
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C. Internet Appendix

C1. Internet Appendix: Simulation Results and Robustness Checks

Table A
Performance of High-Low and Confident High-Low Portfolios: Simulation Evidence
This table compares the performance of the confident high-low portfolios with the conventional high-low portfolios

on simulated data. The data contains 200 stock-level simulated true risk premia, NN-3-based estimated risk premia

and their standard errors over 60 out-of-sample periods. Every period, the “True High-Low” portfolios take long

(short) positions on the stocks with the simulated true risk premia greater (lower) than the x% (100−x%) percentile

of the true risk premia across 200 stocks. x equals 80, 70 and 90 under rule 1, 2 and 3, respectively. The “High-Low”

portfolios take long (short) positions on the stocks with NN-3-based risk premium estimates greater (lower) than

the x% (100− x%) percentile of the predicted risk premia in the cross-section. Extreme predicted-return deciles are

further partitioned into quantiles according to their precision measures. Panel A (Panel B) presents the results using

the absolute t-ratios (inverse standard errors) as proxies for the precision. The “Confident High-Low” portfolios take

long-short positions on the top y% subset of stocks in the extreme predicted return deciles that have the highest

precision. y equals 80, 80 and 50 under rule 1, 2 and 3, respectively. The “Matching High-Low” portfolios take (short)

positions on the stocks with NN-3-based risk premium predictions greater (lower) than the z% (100− z%) percentile

of the predicted risk premia in the cross-section. See section (C.C2) and equation (75) for a detailed description of

the simulated data.

Panel A: Confident-HL Portfolios Constructed Using Absolute t-ratios

Rule 1 Rule 2 Rule 3

Portfolio pred ret avg ret pred ret avg ret pred ret avg ret

True High-Low 2.45% 2.45% 2.16% 2.16% 2.74% 2.74%

High-Low 3.04% 1.69% 2.60% 1.45% 3.57% 1.88%

Matching High-Low 3.64% 1.90% 3.45% 1.84% 3.72% 1.92%

Confident High-Low 3.65% 2.31% 3.47% 2.23% 3.74% 2.23%

Panel B: Confident-HL Portfolios Constructed Using Standard Errors

Rule 1 Rule 2 Rule 3

Portfolio pred ret avg ret pred ret avg ret pred ret avg ret

True High-Low 2.45% 2.45% 2.16% 2.16% 2.74% 2.74%

High-Low 3.04% 1.69% 2.60% 1.45% 3.57% 1.88%

Confident High-Low 2.72% 2.18% 2.34% 1.99% 3.41% 2.18%
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Table B
Performance of Various Long-Short Portfolios: Inverse Standard Errors as Precision Measures
This table reports the performance of various NN-3-based long-short portfolios over the 30-year out-of-sample (OOS)

period. This table uses inverse standard errors (rather than the absolute t-ratios) of risk premium predictions as

proxies for ex-ante precision (i.e., ex-ante confidence). See table IV and section V.C for a description of the portfolios.

The pred ret column represents the average predicted returns. The avg ret column shows the average realized returns.

The t, SR and SR2 columns denote the t-stats of the average returns, annualized Sharpe ratios and squared Sharpe

ratios, respectively. Notes: EW = equal-weighted; VW = value-weighted

All Stocks: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2

EW-HL 1.69% 2.52% 8.21 1.50 2.25

EW-Low-Confident-HL 1.92% 3.02% 7.62 1.39 1.93

EW-Confident-HL 1.69% 3.07% 8.46 1.54 2.39

EW-Confident-HL − EW-HL 0.55%∗∗
(0.013)

0.14∗∗∗
(0.046)

EW-Confident-HL − EW-Low-Confident-HL 0.05%
(0.916)

0.45∗∗∗
(0.001)

All Stocks: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2

VW-HL 1.62% 1.48% 4.95 0.90 0.82

VW-Low-Confident-HL 1.88% 1.13% 2.47 0.45 0.20

VW-Confident-HL 1.64% 1.83% 5.68 1.04 1.08

VW-Confident-HL − VW-HL 0.35%∗
(0.067)

0.26∗∗∗
(0.022)

VW-Confident-HL − VW-Low-Confident-HL 0.70%∗
(0.071)

0.87∗∗∗
(0.000)

Non-Microcaps: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2

EW-HL 0.68% 1.66% 5.43 0.99 0.980

EW-Low-Confident-HL 0.72% 1.30% 3.53 0.64 0.35

EW-Confident-HL 0.66% 1.87% 5.95 1.08 1.17

EW-Confident-HL − EW-HL 0.23%∗∗
(0.041)

0.19∗∗
(0.02)

EW-Confident-HL − EW-Low-Confident-HL 0.57%∗∗∗
(0.000)

0.82∗∗∗
(0.000)

Non-Microcaps: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2

VW-HL 0.66% 1.42% 4.64 0.85 0.72

VW-Low-Confident-HL 0.71% 1.25% 2.90 0.53 0.27

VW-Confident-HL 0.65% 1.91% 5.68 1.04 1.08

VW-Confident-HL − VW-HL 0.49%∗∗
(0.041)

0.36∗∗
(0.001)

VW-Confident-HL − VW-Low-Confident-HL 0.66%∗
(0.0723)

0.81∗∗∗
(0.000)
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Table C
Comparing Confident-HL Portfolios with Double-sorted HL Portfolios
This table compares the out-of-sample performance of the Confident-HL portfolios with the HL portfolios that are

double sorted on predicted-returns. EW(VW)-Confident-HL represents the equal(value)-weighted Confident long-

short portfolio that only include stocks with the most confident risk premium predictions. See section V.C for a

detailed description of the portfolios. Each period, stocks are sorted into quantiles according to their NN-based risk

premia. EW-double-sorted-HL and VW-double-sorted-HL denote the HL portfolios that take equal-weighted and

value-weighted long (short) positions on stocks that have greater (lower) predicted-returns than the predicted-return

of the 99th (1st) quantile, respectively. The avg ret column presents the average return differences between the pair of

investment strategies. The Sharpe2 and IR2 columns show the annualized squared-Sharpe and squared-information

ratio differences between the investment portfolios. The numbers in parenthesis are p-values. *, ** and *** denote

significance at the 1%, 5% and 10% levels, respectively.

All Stocks: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

EW-Confident-HL 1.97% 3.61% 9.58 1.75 3.06 3.12 2.99

EW-double-sorted-HL 2.41% 4.35% 8.73 1.59 2.54 2.98 2.83

Difference −0.74%
(0.071)

0.52∗∗∗
(0.001)

0.14∗
(0.082)

0.15∗∗
(0.02)

All Stocks: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

VW-Confident-HL 1.90% 2.21% 5.95 1.09 1.18 0.87 0.59

VW-double-sorted-HL 2.21% 2.46% 5.35 0.98 0.95 0.67 0.60

Difference −0.25%
(0.39)

0.23∗∗∗
(0.01)

0.20∗∗∗
(0.016)

−0.01
(0.60)

Non-Microcaps: Equal-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

EW-Confident-HL 0.66% 2.25% 6.68 1.22 1.49 1.39 1.22

EW-double-sorted-HL 1.02% 2.39% 5.56 1.01 1.02 0.87 0.66

Difference −0.13%
(0.62)

0.47∗∗
(0.000)

0.52∗∗
(0.000)

0.56∗∗
(0.000)

Non-Microcaps: Value-Weighted High-low Portfolios

Strategy pred avg t SR SR2 IR2
FF IR2

SY

VW-Confident-HL 0.72% 2.07% 5.48 1.00 1.00 0.87 0.59

VW-double-sorted-HL 1.01% 2.20% 4.71 0.86 0.74 0.69 0.44

Difference −0.13%
(0.73)

0.26∗∗
(0.000)

0.28∗∗
(0.000)

0.25∗∗
(0.000)
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C2. Internet Appendix: Simulation Details

To assess the finite sample performance of this paper’s standard errors and Confident-HL

portfolios, I replicate the simulation exercise of GKX.26 I simulate a 3-factor model for excess

returns, for t = 1, 2, . . . , T :

ri,t+1 = g(zi,t) + ei,t+1, ei,t+1 = βi,tvt+1 + εi,t+1, zi,t = (1, xt)
′ ⊗ ci,t, βi,t = (ci1,t, ci2,t, ci3,t), (70)

where ct is a 200×180 matrix of characteristics, vt+1 is a 3×1 vector of factors, xt is a univariate time

series, and εt+1 is a 200×1 vector of idiosyncratic errors. I choose vt+1 = 0, ∀t under models 1 and 3

and vt+1 ∼ N (0, 0.052×I) under models 2 and 4, respectively. I specify εi,t+1 ∼ εi,t+1 ∼ N (0, 0.052).

These parameters are calibrated so that the average time series R2 is 50% (40%) and annualized

volatility is 24% (30%) under models 1 and 3 (2 and 4). The OOS-R2 of NN-3-based risk premium

predictions on the simulated data is 3.8% (3.2%) under models 1 and 3 (2 and 4).

I simulate the panel of characteristics by

cij,t =
2

N + 1
CSrank(c̄ij,t)− 1, c̄ij,t = ρj c̄ij,t−1 + εij,t, for 1 ≤ i ≤ 200, 1 ≤ j ≤ 180, (71)

where CSrank denotes the cross-sectional rank.

And the time-series xt is given by

xt = ρxt−1 + ut, (72)

where ut ∼ N (0, 1− ρ2), and ρ = 0.95 so that xt is highly persistent.

Under models 1 and 2, the parametric form of g(.) is linear and given by

g(zi,t) = (ci1,t, ci2,t, ci3,t)θ0, where θ0 = (0.02, 0.02, 0.02)
′
. (73)

In contrast, under models 3 and 4, g(.) takes the following non-linear functional form

g(zi,t) = (c2
i1,t, ci1,t × ci2,t, sgn(ci3,t × xt))θ0, where θ0 = (0.04, 0.03, 0.012)

′
. (74)

To summarize, the simulated true risk premia are linear in characteristics under models 1 and 2,

whereas they are non-linear under models 3 and 4. Models 1 and 3 do not entertain cross-sectional

temporal residual correlations, whereas models 2 and 4 do.

Lastly, I divide the whole time-series into three consecutive subsamples of equal length (60)

for training, validation, and testing, respectively. Although this paper’s standard errors are derived

26I thank GKX for making their code publicly available.
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under the assumption that the residual errors are uncorrelated in the time-series and cross-section,

table (I) of the main section indicates that the standard errors are well-calibrated even under models

2 and 4.

Simulations for table (A) of the Internet Appendix use the non-linear specification of model 3,

given by

ri,t+1 = g(zi,t) + ei,t+1, ei,t+1 = εi,t+1, zi,t = (1, xt)
′ ⊗ ci,t, (75)

where εi,t+1 ∼ εi,t+1 ∼ N (0, 0.052), g(zi,t) is given by (74) and ci,t is given by (71).
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C3. Why Confidence-levels are Better Measures of Precision Relative to Inverse

Standard Errors

In this section, I present a simple example showing why the absolute t-stat is a better measure

relative to the inverse standard error for constructing Confident-HL portfolios. Consider regressing

a given cross-section of excess stock returns on one of stock characteristics (e.g., betas)

ri = λβi + εi, εi ∼MVN(0, σ2I), i = 1, 2, . . . N (76)

where ri, βi are assumed to be given. λ, which can be interpreted as the market premium, is an

unknown parameter. Assume λ > 0 without loss of generality. Let λ̂ be the OLS estimate of λ

obtained from the cross-sectional regression in (76).

Now, consider four stocks in the out-of-sample that have betas β∗1 , β∗2 , β∗3 and β∗4 , respectively.

Let 0 < β∗1 < β∗2 < β∗3 < β∗4 . Their predicted excess returns are then given by β∗1 λ̂, β∗2 λ̂, β∗3 λ̂ and

β∗4 λ̂, respectively. Straightforward algebra implies that these predictions’ standard errors equal
β∗1 σ̂∑
β2
i
,
β∗2 σ̂∑
β2
i
,
β∗3 σ̂∑
β2
i

and
β∗4 σ̂∑
β2
i
, respectively. σ̂ is the OLS estimate of σ in (76).

Thus, the standard errors are proportional to the stock betas. In contrast, the absolute t-ratios

are invariant across stocks. In other words, the “confidence-level” of predicting returns is the same

across all stocks. In the following paragraph, I show that Confident-HL-se portfolios formed using

the standard errors yield sub-optimal returns relative to the traditional HL portfolios. In contrast,

Confident-HL-t portfolios formed using the absolute “t-ratios” do not.

Consider the following trading strategies using these four stocks’ predicted returns and their

precision measures.

1. Conventional-HL: Takes equal-weighted long (short) positions on the top (bottom) stocks

with the highest (lowest) predicted returns.

2. Confident-HL-t: Sort stocks into two quantiles based on their predicted returns. Take

the long (short) position on the stock in the top (bottom) quantile that has the highest absolute

t-ratio. If two stocks have the same absolute t-ratios, take the equal-weighted average.

3. Confident-HL-se: Sort stocks into two quantiles based on their predicted returns. Take

the long (short) position on the stock in the top (bottom) quantile that has the lowest standard

error. If two stocks have the same absolute standard errors, take the equal-weighted average.

Then the expected return of these three strategies are given by

E(Conventional-HL) = E(Conventional-HL-t) =

[
(β∗3 + β∗4)

2
− (β∗1 + β∗2)

2

](
P (λ̂ > 0)− P (λ̂ < 0)

)
(77)
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E(Confident-HL-se) = (β∗3 − β∗1)
(
P (λ̂ > 0)− P (λ̂ < 0)

)
(78)

For sufficiently large β∗4 , E(Conventional-HL) > E(Confident-HL-se). Thus, standard errors

must always be evaluated relative to the “level” of predictions to obtain better measures of precision.
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