Confident Risk Premia: Economics and Econometrics of Machine
Learning Uncertainties

Rohit Allena *
Goizueta Business School
Emory University

First draft: October 16, 2020

Current draft: March 19, 2021

Abstract

This paper derives ex-ante standard errors of risk premium predictions from neural networks
(NNs). Considering standard errors, I provide improved investment strategies and ex-post out-
of-sample (OOS) statistical inferences relative to existing literature. The equal-weighted (value-
weighted) confident high-low strategy that takes long-short positions exclusively on stocks that
have precise risk premia earns an OOS average monthly return of 3.61% (2.21%). In contrast, the
conventional high-low portfolio yields 2.52% (1.48%). Existing OOS inferences do not account
for ex-ante estimation uncertainty and thus are not adequate to statistically compare the OOS
returns, Sharpe ratios and mean squared errors of competing trading strategies and return
prediction models (e.g., linear, NN and random forest). I develop a bootstrap procedure that
delivers robust OOS inferences. The bootstrap tests reveal that large OOS return and Sharpe
ratio differences between NN and benchmark linear models’ traditional high-low portfolios are
statistically insignificant. However, the NN-based confident high-low portfolios significantly
outperform all competing strategies. Economically, standard errors reflect time-varying market
uncertainty and spike after financial shocks. In the cross-section, the level and precision of risk

premia are correlated, thus NN-based investments deliver more gains in the long positions.
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I. Introduction

Modern empirical asset pricing literature applies machine learning (ML) models to estimate
asset risk premia (i.e., expected returns in excess of the risk free rate), as these models can accom-
modate non-linear relations amongst a high-dimensional set of predictors. In an influential work,
Gu, Kelly, and Xiu (2020) (GKX) examine various ML models, such as neural networks (NNs) and
random forests, to predict individual stock’s monthly risk premia. They argue that NNs statisti-
cally outperform the benchmark linear models examined by Lewellen (2015) (henceforth Lewellen)

in predicting stock risk premia.!

However, the burgeoning ML literature has not ascertained the ex-ante precision (i.e., standard
errors and confidence intervals) of risk premium predictions from NNs. Fama and French (1997) and
Pastor and Stambaugh (1999) show that expected return estimates from traditional factor-based
models are unavoidably imprecise due to uncertainty about unknown parameters, including asset
exposures to factors (betas) and factor premia (gammas). Consequently, they argue that factor-
based risk premium measurements are not suitable for making cost-of-equity capital decisions.
Given that NNs entail a massive number of parameters, determining the precision of NN-based risk

premia is important.

This paper develops a novel and easy-to-implement procedure to estimate predictive standard
errors of NN-based risk premium predictions at both the stock-level and portfolio-level (e.g., in-
dustry portfolios). These ez-ante measures capture estimation uncertainty related to risk premium
predictions. Whereas standard errors of traditional, linear, factor-based and characteristics-based
risk premium estimates are available in the literature, those of highly complex, NN-based risk
premia are not. I tackle this challenge by adapting the NNs of GKX to simultaneously deliver
risk premium predictions and their standard errors every period. The predictive standard errors
resemble classical bootstrap-based estimators but are available in real-time with no additional
computation costs. The obtained standard errors are then theoretically justified, and empirically

validated using Monte-Carlo simulations.

Importantly, I present novel insights demonstrating why and how ex-ante standard errors must
be explicitly considered to address two core asset pricing problems that appear in virtually every
study in the burgeoning ML literature: (i) forming long-short trading portfolios using NN-based or
any ML-based risk premium predictions and (ii) statistically evaluating the ez-post out-of-sample
(O0S) performance of any model-based risk premia and corresponding trading strategies.” Con-
sidering ex-ante standard errors in answering both of these questions is of fundamental importance

and has not been established in the literature.

!Bianchi, Biichner, and Tamoni (2020) and Bali, Goyal, Huang, Jiang, and Wen (2020) employ NNs to estimate
bond and corporate bond risk premia, respectively.

2The standard errors also impact the cost of capital decision-making with NN-based risk premia. In the spirit of
Fama and French (1997) and Pastor and Stambaugh (1999), Allena (2020b) separately addresses this question.



Ex-ante standard errors provide investment gains. Many researchers (e.g. GKX and Avramov,
Cheng, and Metzker (2020)) sort stocks into deciles based solely on their return predictions, and
they take long-short positions on the extreme predicted-return deciles. This paper provides sub-
stantial enhancements to these conventional high-low (HL) investment strategies by exploiting the
cross-sectional variation in the ex-ante precision of risk premia. I introduce novel “Confident-HL”
trading portfolios that exclusively take long-short positions on a subset of stocks in the extreme
predicted-return deciles that have more confident risk premia (i.e., high absolute ratios of risk pre-
mium predictions and their standard errors, or absolute t-ratios).® These strategies deliberately
exclude stocks with relatively imprecise risk premium estimates and thus deliver large OOS average

return and Sharpe ratio improvements.

Ex-ante standard errors impact ex-post OOS statistical inferences. To compare the ex-post
OOS performance of these HL trading strategies or, any competing return prediction models or
associated investment portfolios, researchers use two approaches: (i) reporting point estimates of
models’ OOS R?s (O0S-R2s) and investment portfolios” OOS average returns and Sharpe ratios
(e.g., Chen, Pelger, and Zhu (2020)) or (ii) conducting simple ¢-tests motivated by Diebold and
Mariano (2002) (henceforth DM) (e.g., GKX, Bianchi et al. (2020), Avramov et al. (2020), and
Bali et al. (2020)).* T show that these ex-post OOS inferences are inadequate because they do not

account for ex-ante standard errors (i.e., estimation uncertainty).’

This paper presents a bootstrap procedure, robust to ex-ante estimation uncertainty, for valid
statistical comparisons of any two portfolios’ ex-post OOS returns and Sharpe ratios. Likewise, the
method also compares the predictive performance of any two competing return prediction models
(e.g., linear, random forests and NNs). Simulations suggest that whereas the 5%-level bootstrap
tests yield accurate sizes close to 5%, the DM tests deliver distorted sizes between 13% and 42%,

depending on the degree of estimation uncertainty.

Importantly, the bootstrap tests reveal that existing inferences with the DM tests over-reject
the benchmark Lewellen model in favor of NNs. I find that the difference between both models’
conventional HL portfolios’ OOS returns and Sharpe ratios are either moderately significant or
statistically insignificant. However, NNs exceptionally outperform on subsamples of stocks that
have confident NN-based risk premia. Likewise, NN-based Confident-HL portfolios, which exclude
stocks with relatively imprecise risk premia, statistically outperform all other competing strategies.
Thus, considering ex-ante standard errors of NN-based risk premia is necessary for both real-time

trading strategies and ex-post OOS inferences. Although this paper focuses primarily on NNs

31 measure the precision of risk premium predictions using their confidence-levels (i.e., absolute t-stats). See
section C.C3 for an analytical motivation. Alternatively, I also present results using the inverse standard errors as
proxies for the precision, and my conclusions are the same.

"Using simulations, Allena (2020a) shows that inferences based only on OOS point estimates are highly misleading.

Diebold (2015) and GKX emphasize that the DM tests are not suitable for comparing model-based forecasts
with estimation uncertainty. GKX acknowledge this limitation and conduct the DM tests. I illustrate why and how
to account for parameter uncertainty to obtain accurately sized tests.



because of their predominance, I emphasize that the arguments hold for all ML-based risk premia.

I begin by showing that ex-ante standard errors of NN-based, or any ML-based, risk premium
predictions predict their (future) squared forecast errors and thus yield large economic gains.’ For
example, when the standard errors of specific stock risk premium predictions are large, so are their
squared forecast errors. This result is due to the “bias-variance” tradeoff. Expected squared forecast
errors equal the sum of ex-ante “variances” and squared “biases”. Whereas bias represents model
misspecification, variance quantifies estimation uncertainty. Because predictions from ML models
entail flexible functions involving many parameters, variances rather than biases predominantly
determine their squared forecast errors. As a consequence, I establish that the Confident-HL

portfolios that deliberately drop stocks with imprecise risk premia earn superior expected returns.

A simple example provides the central intuition. Consider two stocks A and B with risk premia
pna and pp, respectively. Let ji4 and fip be their risk premium predictions, which are normal,
uncorrelated and unbiased, with the measurement error variance o?2.
suits ML-based predictions. Then the expected OOS return of the HL strategy that takes a long

(short) position on the stock with the highest (lowest) risk premium prediction equals

The unbiased assumption

BHL) = (ia )P > i)+ (u i) Pl > i) = Gua—um) |20 (P2) ] )
where P(.), ®(.) denote the probability and standard normal distribution measures, respectively.
(1) indicates that the expected HL return monotonically decreases with the variance of risk premium
predictions. In other words, between any two sets of stocks with the same levels of risk premia, the
HL strategy formed from more precise predictions yields higher OOS expected returns. Intuitively,
besides the level of risk premium predictions, the precision helps better determine the cross-sectional

ranking among stocks and thus generates higher HL expected returns.”

Consistent with this intuition, the empirical section documents enormous economic gains from
the Confident-HL portfolios. In particular, I consider a 3-layer NN (NN-3) examined by GKX
to predict a large sample of U.S stock returns between 1987 and 2016. The conventional equal-
weighted (EW) and value-weighted (VW) HL portfolios formed using NN-3-based risk premia earn
ex-post OOS average monthly returns of 2.52% and 1.48%, with annualized Sharpe ratios of 1.5
and 0.9, respectively. However, the EW (VW) Confident-HL portfolio formed from a small subset
of stocks confidently predicted by NN-3 delivers corresponding measures of 3.61% (2.21%) and
1.75 (1.09), respectively. Thus, dropping imprecise predictions enhances the OOS average returns
by 43% (49%) and Sharpe ratio by 16% (21%). In contrast, measures of the EW (VW) “Low-

Confident” portfolio that instead takes long-short positions on the subset of stocks with the most

SForecast errors equal the differences between true and predicted risk premia.
"Mathematically, the prediction uncertainty induces downward bias to the maximum possible expected HL return
that can be obtained when true risk premia are known. This result follows from Jensen’s inequality (see section II).


https://en.wikipedia.org/wiki/Jensen%27s_inequality

imprecise risk premia are relatively much lower, 2.35% (1.31%) and 1.18 (0.55), respectively.

The Confident-HL portfolio’s impressive performance hinges on the theoretical result showing
that NN-based predictions’ ex-ante standard errors predict their ex-post squared forecast errors.
Consistent with this result, I find that the ex-ante confidence and ex-post OOS-R? of NN-based
predictions are monotonically related. The bottom decile containing the stocks with the most
imprecise ex-ante return predictions attain an OOS-R? of 0.81%. In contrast, the top decile of
stocks confidently predicted by NN-3 delivers a dramatic 2.21% OOS-R?2, an increase of 170%.

Notably, Confident-HL portfolios based on simple models involving a few parameters (e.g.,
Lewellen) are less likely to deliver impressive gains. Biases rather than variances predominantly
determine expected forecast errors of simple models. Consistent with this result, I find that the
Confident-HL portfolios formed using the Lewellen model’s risk premium predictions and standard
errors do not yield economic gains. Unfortunately, it is not possible to construct “Low-Bias-HL”
portfolios (analogous to “Confident-HL” portfolios) for simple models using ex-ante biases (rather

than standard errors) because true risk premia are unknown.

To assess whether the documented NN-3-based Confident HL portfolios” OOS gains statistically
outperform other strategies, I first show that the existing DM tests are inadequate because they do
account for ex-ante standard errors. Although ex-ante estimation uncertainty impacting ex-post

OOS inferences seems instinctively puzzling, a simple example demonstrates the main intuition.

Consider comparing OOS returns of any two model-based HL portfolios. These portfolios could
be expressed as different weighted sums of excess returns, depending on which stocks comprise the
portfolios’ long and short legs. Every period, the weights are estimated using all past data. The DM
t-test thus equals the ratio of the HL return differentials’ time-series average to its standard error
estimate. DM show that this test yields valid asymptotic inferences only under the assumption
that the return differential series is covariance stationary. However, the precision of the portfolios’
estimated weights increases over time as more data are available. Thus, the HL return differentials

exhibit time-varying second moments, breaking down the DM assumption.

Consistent with this intuition, I empirically establish that all model-based HL returns violate
the DM assumption. The covariance-stationarity tests of Pagan and Schwert (1990) lends support
to non-stationarities in the HL returns, suggesting that the DM tests are inadequate. To conduct
valid OOS inferences, I develop a bootstrap procedure that is robust to non-stationarities induced
by estimation uncertainty. The method builds on the block bootstrap procedure of Kunsch (1989),
which provides asymptotically valid inferences in the presence of non-stationarities (Gongalves and
White (2002, 2005)).

The bootstrap tests suggest that the differences between NN-3 and Lewellen-based conventional
HL strategies’ OOS returns and Sharpe ratios are either statistically insignificant or moderately
significant. For example, a seemingly large 0.72% (0.37%) difference between the EW (VW) NN-3-



based and Lewellen-based HL portfolios’ average monthly OOS returns are statistically insignificant
at the 1% (10%) level.®

However, the NN-3-based Confident-HL strategy statistically outperforms all other compet-
ing strategies, including NN-3-based conventional HL portfolios, as well as Lewellen-based HL. and
Confident-HL portfolios. Moreover, the relative performance of NN-3 over Lewellen increases mono-
tonically with the precision of NN-3-based risk premia. For example, the average monthly return
difference between NN-3 and Lewellen VW HL portfolios formed using the stocks most confidently
predicted by NN-3 is a highly significant 0.82%. In contrast, the difference is a significantly nega-
tive -1.2% on the subset of stocks most imprecisely predicted by NN-3. These results demonstrate
that besides risk premium predictions, ex-ante standard errors are crucial for constructing desirable

NN-based investment portfolios.

Avramov et al. (2020) argue that investments based on NN-3 predictions primarily extract
gains from microcaps (i.e., stocks with market capital smaller than the 20" NYSE size percentile)
and deliver insignificant OOS returns on non-microcaps. However, I find that the Confident-HL
portfolios yield significant economic gains even on non-microcaps. For example, the EW (VW)
Confident-HL portfolio yields an average OOS monthly return of 2.25% (2.07%), whereas the HL
strategy delivers 1.66% (1.42%). The Confident-HL portfolios’ performance is robust to transaction
costs, traditional factor model risk exposures and higher-moment risks that penalize losses more

than rewarding gains.

To ensure that the Confident-HL strategies’ superior performance is not driven by inadvertently
taking long (short) positions on the stocks that have higher (lower) risk premium predictions, I
construct several matching strategies. These portfolios resemble the conventional HL strategies but
are matched to have the same “predicted-return” averages as those of the Confident-HL portfolios.
Whereas the EW-Confident HL portfolio yields a 3.61% monthly OOS return, the matching HL
strategy makes 3.07%. This result, consistent with the previously described example, reiterates
that for the same levels of risk premia, trading strategies formed from stocks with more confident
risk premia earn higher expected returns. The significant 0.55% monthly return difference between
the two portfolios precisely captures the economic value of incorporating standard error information

into trading strategies.

In the final exploration, I document interesting time-series and cross-sectional variations in
the ex-ante standard errors that have important economic relevance. In the time-series, aggregate
monthly standard errors (i.e., cross-sectional averages of ex-ante standard errors) reflect time-

varying financial market uncertainty. Bloom (2009) and Baker, Bloom, and Davis (2016) docu-

8My results do not directly compare with GKX for one main reason, among others. Lewellen (2015) advocates
three benchmark linear models with either three, seven, or fifteen characteristics. Whereas GKX use the model with
three predictors, I examine the model with fifteen that Lewellen showed to exhibit superior return forecasting ability.
Nevertheless, the conclusion that the DM tests over-reject any of Lewellen’s models in favor of NNs remains valid.



ment that market uncertainty jumps up after major shocks (e.g., Black Monday, Lehman Brothers
bankruptcy). Consistent with these studies, the aggregate standard errors spike an average of at
least twice the value of other periods. Because many individual predictors (e.g., size, price trends,
and stock market volatility) in the NN-3 model substantially deviate from their usual distributions
when markets are uncertain, risk premium predictions based on these unusual predictors would be

hugely imprecise. Thus, the aggregate standard errors capture market uncertainty.

In the cross-section, the NN-3 model (ez-ante) confidently predicts risk premia of stocks as-
sociated with small market capital, high book-to-market ratios, high 1-year momentum returns,
and high risk premium predictions. Thus, the NN-3-based investment strategies deliver more gains
in the long-leg rather than the short-leg. This result contrasts with the “arbitrage asymmetry”
studies, which argue that anomaly-based investment portfolios yield relatively more profits in the
short-leg (e.g., Stambaugh, Yu, and Yuan (2012) and Avramov, Chordia, Jostova, and Philipov
(2013)). Thus, possible mechanisms that lead to the association between the level and precision of

(NN-based) risk premium predictions still need to be explored.

To summarize, this paper quantifies the ezx-ante precision of the NN-based risk premium pre-
dictions and exploits this information to construct desirable Confident-HL investment portfolios.
To statistically assess these portfolios’ OOS performance, the paper shows that the existing DM
tests are inadequate because they do not take into account ex-ante estimation uncertainty. I pro-
pose a bootstrap test that permits valid OOS inferences. The tests suggest that the NN-3-based
Confident-HL portfolios significantly outperform the traditional NN3-HL and Lewellen-HL port-
folios in terms of their OOS returns and Sharpe ratios, whereas the reported dominance of the

conventional NN3-HL over the Lewellen-HL portfolio is statistically insignificant.

A. Contribution

The paper makes three crucial methodological and investment-related contributions.

Ex-ante standard errors. This paper generalizes the “dropout” procedure developed by Gal
and Ghahramani (2016) to obtain standard errors of NN-based risk premium predictions. They
show that an NN that employs dropout regularization is a Bayesian NN with a similar structure,
and they estimate standard errors of NN-based predictions using the comparable Bayesian models’
instantly available posterior variances. However, these are standard errors of individual “raw”
predictions (equivalent to excess return predictions), not of “prediction means” (comparable to risk
premium predictions). Moreover, they do not discuss how to obtain “joint densities” of different
predictions from Bayesian NNs, which are necessary to compute portfolio-level standard errors.

Nor do they show whether these Bayesian standard errors satisfy frequentist properties.

To my knowledge, this is the first paper to compute stock-level and portfolio-level standard

errors of NN-based risk premium estimates by explicitly deriving the marginal and joint densities of



expected return predictions from Bayesian NNs. I draw an equivalence between the frequentist and
Bayesian standard errors and use simulations to show that the computed standard errors satisfy
frequentist properties with accurate coverage probabilities. For example, simulations indicate that
95% (or any 2% with 0 < x < 100) confidence intervals constructed from risk premium predictions

and their standard errors cover the true simulated risk premia with nearly 95% (2%) probability.

Out-of-Sample Comparisons. The paper relates to studies that compare competing return
forecast models, including Goyal and Welch (2003, 2008), GKX, Bianchi et al. (2020), Bali et al.
(2020), and Chen et al. (2020). These studies use either the OOS DM tests or assess the point
estimates of OOS Sharpe ratios and OOS-R?s, without accounting for estimation uncertainty. In
contrast, this paper’s block bootstrap method generalizes the DM tests by automatically accounting
for non-stationarities induced by estimation uncertainty. This method can be employed to assess

OOS performance of any model-based return predictions.

Investment Portfolios. The paper relates to studies, including GKX, Chinco, Clark-Joseph,
and Ye (2019), and Avramov et al. (2020), that construct traditional HL portfolios based on var-
ious model-based return predictions. Alternatively, this paper shows how Confident-HL strategies
could deliver superior expected returns. These strategies generally apply to all model-based return
predictions, as long as their predictive standard errors are informative about their squared forecast

errors.

B. Paper Overview

I organize the rest of the paper as follows. Section II provides the basics of model-based risk
premium predictions and shows why the Confident-HL portfolios yield superior expected returns.
Section III presents the statistical framework of NN-based risk premia and derives their standard
errors. Section IV shows how to conduct valid OOS inferences. Section V presents the empirical
results. Section VI concludes. Appendix includes proofs of propositions and simulations. Internet

Appendix contains additional robustness checks and simulations.

II. Risk Premium Predictions and Predictive Standard Errors

This section presents the fundamental premise of measuring risk premia based on general
econometric models, including the traditional linear and more advanced ML models (e.g., NN).
It builds on the bias-variance tradeoff to explain why ML models’ predictive standard errors are
informative about their squared forecast errors, thus yielding large economic gains in terms of

appropriate investment portfolios.



A. Basics of model-based risk premium predictions

In the spirit of GKX, consider a general additive prediction error model for realized stock

returns in excess of the risk-free rate, given by
Tigi1 = Ey(Tigi1) + €iq1, Bileigrn) =0, Vi(€igq1) = o (2)

where r; ;11 is the excess return of stock i at period t 4+ 1; Ey(r;s+1) is the stock i’s unobserved
conditional risk premium at period t; and €; ;41 is the unexpected component of returns due to new
information at ¢4 1, which is unpredictable at t. E;(.) and V;(.) denote the conditional expectation

and variance operations, respectively. €; ;41 are iid over time and across stocks.

Let a flexible model f(zit; 8), involving stock-level predictors {zi} () and parameters 3, esti-
mates unobserved risk premia. The set of predictors could be potentially large, containing many
characteristics (e.g., size and book-to-market) and macroeconomic variables (e.g., earnings-to-price,
stock market volatility). Like GKX, the parametric form of the model, f(.), remains the same across
different stocks and over time, thereby exploiting information from the entire panel of data to yield
stable risk premium measurements. Because the true parameters, 8, are unknown, the risk premia

are estimated by

~

Ei(rig+1) = f(zi; B), V stocks i, (3)

where B are estimated parameters from the past data. The expected squared forecast errors of the

model-based risk premium predictions are given by

~

B |(Biren) = Fleasi) | = B | (ron = i) | = Vit vi @

Because €; 141 and {Zit}(i,t) are independent, minimizing the risk-premium squared forecast errors
is equivalent to minimizing the realized return squared forecast errors. Thus, the best risk premium
measurements are those that accurately predict subsequent returns. Consequently, the literature

uses the following specification to estimate the true risk premia:

ritr1 = f(zit: B) + N1, Er(nig+1) =0, (5)

where risk premium and next period return (7 1) predictions are given by
Ey(rig1) = Figr1 = f(zi; B) (6)

Importantly, the expected squared forecast errors of return predictions based on (5) could be



decomposed as the sum of three terms, given by

Ey [(Ti,t—l—l — f(zis 3))2} = (Et(’f’i,t+1) — Ei(f (25 B)))Q +E; (f(Zz‘,t; B) — Ey(f(2i4; B)))Q +Vi(€it41)-

vV
Bias? Variance

(7)

The first term in the right hand side of (7), popularly known as “squared-bias”, measures

the model misspecification of f(.) in estimating the true risk premia. The second, known as
“variance”, quantifies parameter uncertainty. The ex-ante predictive standard errors, which are
the main focus of this paper, exactly equal the square root of the variance component. The final
term, known as “irreducible-variance”, captures the realized return variation due to unpredictable
new information. Under the assumption that V;(€;+41) is constant across the stocks, the squared-
bias and variance components wholly determine the cross-sectional variation in squared forecast

errors. These components also explain the squared forecast errors’ time-series variation.

Remark-1: Ex-post squared forecast errors of risk premium predictions based on simple linear
models are challenging to predict ex-ante. Such models comprise few parameters and thus yield
small predictive standard errors. However, they are grossly misspecified when the true risk pre-
mia are non-linear functions of many predictors. Hence, squared-bias rather than variance largely
governs their forecast-squared errors. Because true risk premia are unobserved, ex-ante measure-
ment of squared-bias is not possible, rendering simple models’ forecast-squared errors unpredictable

ex-ante.

Remark-2: In contrast, ex-post forecast errors of ML-based predictions are ex-ante pre-
dictable. These predictions use many predictors and parameters and thus are less likely to be mis-
specified. However, their massive predictive standard errors, which reflect parameter uncertainty,
predominantly determine their forecast-squared errors. These standard errors, unlike biases, are
readily obtainable, rendering ML models’ forecast-squared errors predictable ex-ante. For instance,
in the cross-section, stocks whose ML-based risk premium predictions have large ex-ante standard

errors also have large ex-post squared forecast errors.

Consistent with these remarks, the empirical section documents that the ex-ante predictive
standard errors of the NN-based risk premium predictions strikingly predict their ex-post squared
forecast errors, whereas those of the Lewellen-based predictions do not. The following subsection
illustrates how these ex-ante standard errors could be used in real-time to form desirable investment

portfolios that yield large economic gains.

B. Risk Premium Predictions, Standard Errors and Investment Portfolios

This subsection introduces the Confident-HL portfolios that deliberately exclude or downweight

stocks with large predictive standard errors from the extreme predicted-return decile stocks. 1



restate the example provided in the introduction to illustrate why these portfolios yield superior

expected returns relative to the conventional HL strategies.

Example-1. Consider two stocks A and B with true risk premia 4 and pp (< pa), respec-

tively. Let fia and fip be the predicted risk premia based on an econometric model, satisfying

fia = fia +€a, fip = pB +e€p, €a,ep ~ N(0,0°), €a L ep. (8)

Recall that the assumption of unbiased predictions (E(e4), E(ep) = 0) is more likely to hold for ML-
based rather than traditional linear models. For simplicity, (8) assumes uncorrelated predictions
with the same predictive standard error, o. Proposition-1 relaxes this assumption and generalizes

for heteroskedastic standard errors.

The expected return of the traditional HL portfolio that goes long (short) on the stock with
the highest predicted risk premium is then given by

BHL) = (a1 P(ia > i)+ (u i) Pl > ) = ea—m) |20 (PAL2) ] (0

where P(.), ®(.) denote the probability and standard normal distribution measures, respectively.

Thus, (9) indicates that the expected HL return monotonically increases (decreases) with the
precision of risk premium predictions (o). Mathematically, the prediction uncertainty induces bias
to the maximum possible expected HL return that can be obtained when true risk premia are
known. For example, the HL strategy formed from the zero standard error predictions delivers
the maximum possible expected return of (x4 — pup), as the strategy always takes the long (short)
position on A (B) by perfectly ranking the stocks. In contrast, the HL portfolio formed from grossly
imprecise predictions (o0 = 00) earns zero expected returns, with a bias of (ug — pp). This result
follows from Jensen’s inequality: “ The expectations of the maximum (minimum) of a given set of
risk premium predictions are lower (higher) than the maximum (minimum) of the expectations of
predicted risk predicted risk premia”. The lower the variance of risk premium predictions, lower
will be the difference between both.

The following proposition builds on this intuition and formally establishes the Confident-HL
strategies’ superiority over the conventional HL portfolios.

Consider four stocks A, Aa, By, and By with true risk premia pa, pa, pp (< pa), and up,
respectively. Predictions are unbiased, independent, and normal, but could have different predictive
standard errors. To form trading strategies, stocks are sorted into two quantiles, denoted by Qg
and Qr. Qr (Qs) comprises the two stocks with the highest (lowest) risk premium predictions.

Now, consider the following three long-short investment strategies:

1. HL: The traditional HL strategy takes the EW long (short) positions on the 2 Qp (Qg)

stocks.

10



2. PW-HL: The “precision-weighted” (PW) HL portfolio also takes the long (short) positions
on the two Qr (Qg) stocks, but overweights (> 50%) the precisely predicted stock in each

quantile.

3. Confident-HL: This strategy takes the long (short) position only on the stock with the lowest
predictive standard error in each quantile, deliberately excluding the stock with imprecise risk

premium.
Then, the expected returns of these portfolios are in the order of

Proposition 1:
E(HL) < E(PW-HL) < E(Confident-HL). (10)
Proof. See Appendix (A.1). O

The proof is similar to the previous example. Thus, proposition-1 indicates that the Confident-
HL portfolios dominate the traditional HL portfolios in terms of earning higher expected returns.
Proposition-1 makes the stylized assumption of uncorrelated predictions for mathematical tractabil-
ity, as it is not possible to generalize this result with correlated predictions. However, Internet Ap-
pendix C.C1 (table A) presents an extensive simulation study to validate proposition-1 for general
cases with many stocks, correlated return predictions and Confident-HL portfolios formed from

various other quantile portfolios (e.g., decile).

Consistent with these results, the empirical section documents large economic gains emanating
from the Confident-HL portfolios based on the NN-3 risk premium predictions and their standard
errors. Such large gains would not be realized from the Lewellen-based Confident-HL portfolios, as

their predictive standard errors do not predict their squared forecast errors.

Before deriving NN-based risk premia’s predictive standard errors to form the Confident-
HL portfolios, it is worth emphasizing a couple of important points. First, dropping stocks with
imprecise risk premia improves the expected returns of HL strategies, not necessarily their variance,
as it may reduce the diversification benefit. Determining the trade-off between expected HL returns
and their variances is ultimately an empirical question. The empirical section shows that the
Confident-HL portfolios formed using the standard decile-sorted rules deliver superior Sharpe ratios,
suggesting that the expected return improvements are relatively larger. Second, the Confident-HL
strategies exploit information only from the variance of risk premium predictions and not predicted
return variances nor covariances. Forming optimal portfolios using all stock returns’ joint predictive

density requires a Bayesian framework, thus left for a future study.
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III. NN-based Risk Premia and Standard Errors

This section presents the statistical framework to predict individual stock- and portfolio-level
risk premia using NN. It then theoretically derives their standard errors, shown to be easily ob-
tainable with no additional computation cost. In particular, an NN that employs a specific reg-
ularization known as “dropout” is identical to a Bayesian NN with a similar structure (Gal and
Ghahramani (2016)). A simple analogy to this identity is the equivalence between linear regressions
with Ly regularization (i.e., Ridge regressions) and Bayesian linear regressions. Thus, NN-based
predictive standard errors are estimated using the comparable Bayesian models’ instantly available

posterior variances.

Although Bayesian posterior variances and frequentist standard errors philosophically repre-
sent different entities, the section justifies why and how the obtained standard errors satisfy critical
frequentist properties with accurate coverage probabilities. This is important, because no frequen-

tist alternative currently exists (to my knowledge) to provide standard errors.

A. Neural Networks

Figure 1. Example of a 1-layer Neural Network

Hidden Output

Input layer
layer layer

Note: An example of a 1-layer, feed-forward neural network.

Like GKX, this paper considers conventional “feed-forward” NNs, which consist of an “input
layer” of raw predictors, one or more “hidden layers” and an “output layer” of a final prediction,
in that order. Each layer is composed of neurons that aggregate information from the neurons of

(immediately) preceding layer. Thus, information hierarchically flows from the raw predictors of
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the input layer to the neurons in the hidden layers and finally to the final prediction in the output
layer. To understand how NNs systematically conduct this prediction exercise, figure (1) shows
a simple example of a 1-layer NN (NN-1) with 3 and 4 neurons in the input and hidden layers,

respectively.

In figure (1), {1,292, 23}, {hk1}i_,, and y are the sets of neurons in the input, hidden, and
output layers, respectively. Furthermore, {xi}?zl are raw individual predictors, and y is the final
output prediction. Each neuron in the hidden layer applies a nonlinear function (¢) to an aggregate
signal received from the preceding (input) layer. The aggregate signal is a weighted sum of the

preceding layer’s neurons plus an intercept, known as “bias”. Thus,

3
hk,l = ¢ blk + Zwljkx] ’ for k = ]-7 25 37 47 (11)
7=1

where by, is the intercept associated with the input (first) layer and k* neuron in the (next) hidden
layer, and wy;, is the weight associated with the 4% predictor (neuron) in the input layer and the
k' neuron in the hidden layer. The linear sum, (by; + Z?zl wijk;), is the aggregated signal
received by the hidden layer’s h; 1 neuron from the input layer. In the spirit of GKX, the nonlinear
function ¢ takes the rectified linear unit functional form (ReLU). However, the theory developed

in this section holds for any general function. The ReLU is given by

0if x <0
¢(x) = ReLU (z) = (12)

x otherwise.

Likewise, the final output is given by
4
Youtput = bz + > wajhi1, (13)
j=1

where ws; is the weight associated with the 4% neuron in the hidden layer and the output. Thus,
given an input of @ individual predictors, x, the final prediction, youtput, based on a general NN-1

model with K hidden neurons can be expressed in the parametric form
Youtput = bo + ¢(b1 + fEWl)W?) (14)

where {W7, W, b1, ba} are the unknown parameters. W; and W are the weight matrices connecting
the imput layer to the hidden layer and hidden layer to the output layer, respectively. Intercepts
b1 and by are added to the hidden and output layers, respectively. W7 is a Q x K matrix, W5 is a

K x 1 vector, by is a K x 1 vector, and bs is a scalar.
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B. Parameter Estimation, Regularization, and Dropout

For simplicity, the rest of the section focuses on NN-1 models. However, the theory that follows
holds in general for any feed-forward NN with an arbitrary number of hidden layers and neurons.

Consider the return prediction specification in (5),

Tit41 = f(zit; B) + Nig+1, (15)

where r; ;41 is stock i’s excess return at period ¢ + 1, and z;; is the set of stock i’s raw predictors

at time ¢t. When f is an NN-1, it takes the parametric form in (14), with 8 = {Wy, Wa, by, b }.
Because the parameters are unknown, risk premia are measured as E; (7 ¢+1) = f(2it; B), where

B are estimated parameters of 8. Given a panel of “training data”, the literature typically minimizes

the mean of squared forecast errors to estimate the parameters, i.e

B = arg Hlln Z Z Pige1 — (b2 + @by + 2 W1)W2))?, (16)
tETT €S

where T'r is the training sample over N7, periods, and S is the total set of Ng stocks. The estimated
parameters from (16) often overfit the data by taking extreme values. To alleviate this concern,
the literature adds various penalties such as Lo regularization to the usual squared forecast error

loss function. Under Ly regularization, the estimated parameters are given by

o 2 2 (rien = (ba 6y + 20 W2)?

tETr €S
AW + [[Wal[? + [[oa] * + 1 [b2] %] (17)

ﬁA = arg mln

where ||.|| represents the Ly norm operator, and A is known as the “hyperparameter”. Note that
the estimated parameters depend on the hyperparameter A. From a given set of hyperparameters,
the standard practice chooses the \ that minimizes the forecast-squared error mean in a panel of

“validation data” that do not overlap with the training data. In particular,

> (Tz 1 Zztﬂx))Z, (18)

teV ieS

A = arg min
& AEA VNS

where V' is the validation sample over Ny periods, and A is a given set of hyperparameters.

Thus, (17) and (18) together determine the estimated parameters and hyperparameters. Be-
cause the optimal parameters that minimize (17) are not available in closed-forms, numerical algo-
rithms start with an initial estimate (guess), and then iteratively update the parameters by feeding
each observation into the training data one-by-one. This procedure could be computationally in-

tensive. Thus, a popular algorithm known as stochastic gradient descent (SGD) considers random
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samples (rather than the full sample) from the training data to iteratively update the parameters

until they converge.’

Besides Lo, GKX use several other regularizations, such as Li, to minimize overfitting. This
subsection introduces another popular regularization known as dropout that can be employed either
exclusively or simultaneously with other penalties. Dropout stands out among others because it
boosts the performance of NN models and helps determine predictive standard errors. GKX do
not discuss the dropout procedure. In a recent working paper, Chen et al. (2020) use dropout to fit
various NNs for predicting stock returns. However, they do not address how such a regularization

could be exploited to obtain predictive standard errors.

Dropout. Dropout is a simple but powerful regularizations proposed by Srivastava, Hinton,
Krizhevsky, Sutskever, and Salakhutdinov (2014).°

Figure 2. NN-1 with Dropout Regularization

Hidden Output
Input layer
layer layer
ba
by Se
NG N
Gy S.SC P Dropped.

Dropped >< N
X Dropped

Note: The figure shows an NN-1 with dropout regularization. At each training iteration, a random
subset of all neurons in one or more layers, including the input layer, but always excluding the
output layer, is dropped. Each iteration’s dropped out neurons temporarily output 0 (during that

iteration), but might become active in the next iteration.

At each training iteration during parameter estimation, every neuron, including the input
neurons, but always excluding the output neurons, has a probability (1 — p) of being temporarily
dropped. These dropped out neurons are deliberately set to output 0 (equivalently, discarded)

during that iteration but are allowed to become active in the next iteration. Like A for Lo, (1 — p)

?See GKX for a detailed review of parameter estimation using SGD.
See Géron (2019) for an excellent non-technical summary on dropout regularization.
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(p) is a hyperparameter known as “dropout rate” (“retention rate”), and thus chosen (typically
between 10% and 50%) to minimize the validation forecast-squared error. After training and
obtaining estimated parameters, neurons are no longer dropped (i.e., to make a new prediction).

Figure (2) shows an example of an NN-1 with dropout regularization.

To summarize, during parameter estimation, dropout randomly disconnects a few neurons
at each iteration to avoid overfitting and improves performance. Consider a random sample of
1000 observations from training data for parameter estimation. The SGD algorithm takes 1000
iterations to estimate the parameters. Employing dropout would imply 1000 different NNs are
trained, yielding 1000 distinct estimated weights. These weights are not independent but are
nevertheless all different. The final estimated weights could be interpreted as an average of these

distinct weights, thereby alleviating parameter uncertainty.

Estimated parameters of an NN-1 that employ dropout and Ly regularizations satisfy

Z Z (rigr1 — (b2 4+ d(b1 + zit(P1a W) (P2isW2)))?

tETr €S

B)\p = argmm
AIWALR A+ [[Wal 2+ (a2 + [[b2]7] (19)

where each element in pi; and po; is an independent draw from a Bernoulli distribution with
parameter (p) ((1-dropout rate)). pii¢ and po; are (Q x @) and (K x K) diagonal matrices,
respectively. Thus, unknown parameters could be estimated by solving (19).!! Hereafter, an NN

that employs Lo and dropout regularizations will be called a “dropout NN”.

Stock-level risk premia. Given newly observed “test data” (Te) of raw predictors that
do not overlap with the training and validation data sets, a dropout NN-1-based risk premium

prediction is given by

Et(r;'k,t—i-l) ~ E;E,Dropout = (bQ,{/\,p} + ¢<b1,{)\,p} + z;ktwl,{)\,p})WZ,{)\,p})v r;'k,t—i—h z;'kt € T€7 (20)

where the parameters, {bs (1, b1,{x Wa (\p}} are given in (19). B}

it, Dropout represents

b W1,
the dropout NN-1-based risk premium prediction of stock 7 at period ¢. Note that no neurons
are dropped out while making predictions on the test data. However, these predictions rely on
estimated parameters that employ dropout regularization. In fact, Srivastava et al. (2014) establish
that the predictions given in (20) are approximately equal to the sample averages of corresponding

predictions that employ dropout at the test time as well. In particular,

D
zt ,Dropout ~ 5 Z b2 AN\p} + QS bl AN} + Zzt(pldeI {A,p}))(indWQ,{)\,p}))a T;'k,t—i-l’ Z:t € Te, (21)
d=1

" The most commonly used software programs, including Python and Matlab, readily solve (19).
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where each element in {pli,d,pgi,d}f;l is an independent draw from ~ Bernoulli(p), and D is the
total number of distinct predictions drawn at the test time with dropout applied.

*
Pt,Dropout’

using a set of stock-level weights {wp;}7_; at the beginning of period ¢ + 1 is given by

Portfolio-level risk premia. The risk premium prediction, F of portfolio P formed

S S
* _ . * ~ * ~ . * *
Et(TP,t—H) - E WP, tTi t4+1 =~ EPt,Dropout ~ E wP,%tEit,Dropoutv Titr1 € Te, (22)
=1 i=1
where B} b, 00 1S given in (21).

Importantly, it turns out that the risk premium estimates in (20) (or (21)) and (22) are
approximately equal to the respective risk premia’s posterior density means under an equivalent
Bayesian NN with a similar structure. Using this approximation but before formally discussing
Bayesian NNs, the following subsection illustrates how to instantly obtain standard errors of general

dropout NN-based risk premium predictions.

C. Standard Errors of Risk Premium Predictions based on Neural Networks

Stock-level standard errors. Given a new observation of a stock’s raw predictors zj;, in the

test data, consider its risk premium prediction based on a dropout NN-1

Et(r;:t—i—l) ~ E;,Dropout = (bQ,{/\,p} + ¢(b1,{A,p} + z;tWI,{A,p})WQ,{A,p})v Tit+1, Z;‘kt €Te. (23)

Then the predictive standard error of El*t Dropout 18 estimated by the sample standard deviation of
distinct predictions that are obtained by randomly dropping out neurons (with probability (1 —p))

at the test (prediction) time. In particular,

1 & 1 & i
SE(Ef Dropout) = D Z (Ei,d,t—l-l ) Z Ei,d,t+1> : (24)

d=1 d=1

where D is the total number of distinct predictions (Ei,d,t) drawn, with each Ei,d,t given by

~

Eiai = (byapy + (01, py + 25 (01aWi (apy)) 02aWa (ap}))s 2 € Te. (25)

Every element in p; 4, p2,4 is an iid draw from the Bernoulli(p) distribution. The empirical section
considers D = 100 to estimate the standard errors, as simulations confirm that it yields well-

calibrated estimates.'?

To summarize, after estimating an NN-1 model’s weights using the training and validation

'2The higher D is, the more accurate uncertainty estimates will be. However, inference time also increases with
D. Thus, an ideal D trades-off between latency and accuracy.
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data sets, standard errors of risk premium predictions on the test data are quickly available by
collecting predictions that deliberately assign 0 to randomly selected weights. Intuitively, as the
following subsection shows, this procedure is equivalent to drawing samples from the risk premium’s
predictive distribution based on a comparable Bayesian NN having the same number of neurons
and hidden layers as the considered NN-1.

Portfolio-level standard errors. Likewise, the predictive standard error of a portfolio-level

prediction is given by

D 2
" 1 . 1 R
SEt(EPt,Dropout) = D Z (EP,d,t - D Z EP,d,t> ’ (26)
d=1 d=1
where

. S

Epg: = ZWP,i,t (bo,rpy + (b1 a1 + 2t (1AW, 0 p}) (P2aWa ia 1)) 5 23t € Te, (27)
i=1

and p1 4, p2.q are iid draws from Bernoulli(p).

The procedure for computing portfolio-level standard errors deserves emphasis. Note that the
dropped weights (i.e., p14, p2q draws) are the same across the stocks that composite P, thereby
preserving correlations among stock-level risk premium predictions to yield unbiased standard error

estimates, as shown in the following subsection.

The outlined procedure for obtaining standard errors in (24) and (26) generally applies to all
predictions based on NNs with an arbitrary number of layers and neurons as long as their weights
are estimated using dropout and Lo regularizations (Gal and Ghahramani (2016)). The procedure
is also robust to adding more regularizations, such as implementing the SGD algorithm with an

arbitrary learning rate.

It is worth emphasizing that (24) and (26) yield standard errors of risk premium predictions
and not excess return predictions. Fama and French (1997) and Pastor and Stambaugh (1999)
also compute risk premium estimates’ standard errors. Recall that realized excess returns equal
the sum of risk premia and unexpected returns due to unpredictable new information. Thus,
their predictive variances equal the sum of predictive variances of risk premium predictions and
“irreducible-variance” due to unexpected returns (see (7)). The validation data’s mean squared
error is an asymptotically unbiased estimate of irreducible-variance (Zhu and Laptev (2017)). Thus,

predictive variances of return predictions are easily obtainable as well.
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D. Dropout Neural Networks and Bayesian Interpretation

This subsection illustrates a profound connection between dropout NNs and Bayesian NNs to

formally validate the previously presented standard errors under a Bayesian framework.

In an influential work, Gal and Ghahramani (2016) first prove that dropout NNs have a
Bayesian interpretation. In doing so, they draw upon the probability theory of Gaussian processes,
thereby limiting the potential audience for their work. Moreover, they show how to estimate
standard errors of individual NN-based “raw” predictions (analogous to return predictions) but
not those of “prediction means” (equivalent to risk premium predictions). They also do not discuss
how to obtain “joint densities” of different NN-based predictions, which are necessary to compute

portfolio-level standard errors.

I use a simple Bayesian model to provide a straightforward but rigorous discussion of their
central conclusions. In a significant contribution, I (Bayesian) theoretically derive the standard

errors (24, 26) of stock and portfolio-level risk premia.

Bayesian Neural Network. Consider the Bayesian NN analogous to the previously consid-

ered NN-1, with the parametric form given by
Pige1 = by + ¢(b1 + 2 W1)Wa + i1, Ee(nfyyq) = 0727 (28)

where the parameters {W1, Wa} are random. o and b = ({b1,bz}) are assumed to be known for

simplicity.'® Denote the risk premia by s, where
it = Ei(rits1) = ba + ¢(br + 2y W1)Wa. (29)
Specify the unknown weight matrices with the standard Gaussian priors,
(Wi, Wa] = N(0,1721),

where [ is the (NK + K) x (NK + K) identity matrix, and [ is a hyperparameter. Then the
predictive density of stock 4’s risk premium given a set of its raw predictors, zj;, from the test data,

and the past training and validation data sets, denoted by {R, Z}, is given by
P(M:,tk;tv R, Z) = /P(,LLZAZ;, R, Z, W1, W3, b, U?;)P(le W2|Ra Z,b, U?])dwldw% (30)

where P(Wy, Ws|R, Z, b, 03]) is the posterior density of the weight matrices given past data. Because
this density is not available in a closed-form, the literature often uses one of the powerful methods

known as variational inference (VI) to directly approximate the intractable posterior.

3The theory generalizes when {b1, b2} are allowed to be random as well, in which case these parameters could be
specified with Gaussian priors.
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The following discussion introduces VI and shows that approximating the posterior of the
weight matrices using VI and frequentist estimation the weights with dropout and Lo regulariza-

tions, as in (17), are equivalent. Thus, dropout NNs are approximations to Bayesian NNs.

Variational Inference (VI). To approximate a given posterior density P(W|data), VI first
considers a family of some known densities, {gg(W)}, parameterized by 6, and then finds the optimal
parameter, 6%, such that the Kullback-Leibler divergence between gg«(WW') and the true posterior
density is minimized. Thus, VI approximates the true posterior with gg«(WW'), where the optimal
parameter 8* would be a function of data. The key is to consider a “good” family of densities that
guarantee the (almost surely) convergence of gg«(W) to the true posterior.'* As a reference, in
the finance literature, Allena and Chordia (2020) develop the first VI method to approximate the

intractable posterior density of true stock liquidity and equilibrium prices.

Variational Inference for Bayesian Neural Networks. Gal and Ghahramani (2016) con-
sider the following family of independent Gaussian mixture densities to approximate the posterior

of the NN weight matrices

K;
ain vy (W1, Wa) = gy (W) qu, (Wa), with gag, (W) = H Gy (Wig), for i =1,2, where
k=1
Amq (wiq) = pN(miQ7U2I) + (1 —p)N(O,UQI) for i =1,2, (31)
with My = [(m1q)] and My = [(mgq)]. These are the “variational” parameters to be optimized.

Also, Wy = [(w1,)] and Wa = [(wag)]. 02 and p are known scalars. K; is the number of neurons in
the 4th layer. Thus, K1 = Q and Ky = K. M; and M> are matrices with the same dimensions as

Wy and Wa, respectively.
The optimal set of parameters { M7, M5} that best approximate the true posterior is given by

{MikaM;} = arg {]\?HJ\I} }KL (QM1 (Wl)qM2 (WZ)HP(WDWQ‘Rv Zbao-?])) ) (32)
1,M2

where K L(x||y) represents the Kullback-Leibler divergence between the two random variables,

and y.

Bayesian and Dropout Neural Network Equivalence. Interestingly, given the sample

of training data, it turns out that the optimal parameters in (32) minimize the loss function that

1See Blei, Kucukelbir, and McAuliffe (2017) for an excellent review of VI. They address two fundamental questions:
i) what family of densities to consider? ii) how to obtain the optimal density in the family that best approximates
the true posterior?
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resembles a dropout NN’s loss function, as in (19). In particular,

1
M7y, M5} = arg min
(M1, M5} g{Ml,Mﬁ NrrNg

Z Z (rig+1 — (b2 + o(b1 + Zit(plitMl))(intMQ)))2

teTr icS
+ | [M][? + pol | Mo * + pasl[ba][? + pal B2] *, (33)

where each element in pi; and po; is an independent draw from a Bernoulli distribution with

parameter (p). {u1,...pa} are different scalars that are distinct functions of {l, 07, o}

Thus, for an appropriate choice of [j, the variational parameters, {M;, M5}, that best ap-
proximate the (Bayesian) NN weight matrices’ posterior density are identical to the comparable

(frequentist) dropout NN’s estimated weights. This implies
Mik = Wl,{)up}7 and M; = WQ,{)MP}' (34)
The predictive density of a risk premium given in (29) can be approximated by

Puilziy R, Z) =~ Qi 4|25, R, Z) = /P(MZJZ%R, Z, W1, Wa, b, a0)qnrz sy (Wi, Wa)dW1dWo,
(35)
where { M7, M3} are given in (34), and ¢(.) in (31).
As an immediate corollary, (35) implies that the mean of a risk premium’s (approximated)
Bayesian predictive density is

E [Q(uf’t|z;‘t,R, Z)] ~ I

it, Dropout

1 D

~ 5 2 (02,0 p) + 001,00y + 2 (PriaWr () (P2iaWa (0 )5 2ie € T, (36)
d=1

where each element